当前位置: 首页 > 高中学习网站 > 高考

高中函数的表示,函数在高考中的地位

  • 高考
  • 2024-09-09

高中函数的表示?则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。那么,高中函数的表示?一起来了解一下吧。

高中函数15种题型

函数一共有7种,分别是一次函数、二次函数、正比例函数、反比例函数、三角函数、指数函数和对数函数。

1、一次函数

一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。

一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。

2、二次函数

二次函数的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。

如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。

3、正比例函数

一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。

正比例函数属于一次函数,但一次函数却不一定是正比例函数,它是一次函数的一种特殊形式。

4、反比例函数

一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。

反比例函数的图像属于以原点为对称中心的中心对称的两条曲线,反比例函数图像中每一象限的每一条曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

函数类型及图像

函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。

函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称x是自变量,y是x的函数。x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。

扩展资料

首先要理解,函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止且不止一个。最后,要重点理解函数的三要素。

函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示 。

在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。

自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。

函数表示法高一

函数的表示法有列表法、解析式法、图象法。

1、列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。列表法也有它的局限性:在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。

2、解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问提中的函数关系,不能用解析式表示。

3、图象法:形象直观,但只能近似地表达两个变量之间的函数关系。把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。

函数在高考中的地位

1、定义不同

初中函数的定义是从[变化关系]定义的,如果一一个量随着另一个量的变化而随之变化,那么就说这两个量有函数关系;

而高中函数引入了集合的概念后,函数的定义也得到了扩充,在原先两个变量的基础上,新增了一个被称为“对应法则”的概念,“对应法则”一般用f表示,此时再来定义函数就可以如此定义:设2个变量x和y,若x在变化时,参照某个对应法则f,y都有唯一的值于其对应,那么就称x是自变量,y是x的函数,f是它们的对应法则(引入对应法则后,x的函数可直接写作f(x)的形式)

2、知识点不同

初中函数:主要学的是一次函数、 二次函数、反比例函数以及三角函数初级概念。初中函数特点:初中函数只要求:(1)了解什么是函数;(2) 会求简单函数的解析式; (3) 会简单运用各种函数; (4) 不要求求各函数的定义域与值域。

高中函数:一元函数、二次函数、指数函数、对数函数、幂函数、三角函数。高中函数特点:(1) 深研函数定义(映射) ;(2) 熟练掌握各种函数的运用(包括求解析式、定义域、值域) ; (3) 能运用函数的思想解决相关的实际问题;(5)加大了函数与函数之间的综合。总之函数是贯穿中学数学的一条主线在中学的理科学习中都要用到函数的观点解决相关问题,特别是实际问题。

所有函数都可以用图像表示吗

初中函数:一次函数、二次函数(重点)、反比例函数以及三角函数初级概念。初中函数特点:初中函数只要求:(1)了解生么是函数;(2)会求简单函数的解析式;(3)会简单运 用各种函数;(4)不要求求各函数的定义域与值域。高中函数:一元函数、二次函数(贯穿高中三年)、指数函数(*)、对数函数(要求较低)、幂函数(现 在教材不要求)、三角函数(重中之重)。高中函数特点:(1)深研函数定义(映射);(2)熟练掌握各种函数的运用(包括求解析式、定义域、 值域);(3)能运用函数的思想解决相关的实际问题;(5)加大了函数与函数之间的 综合。总之:函数是贯穿中学数学的一条主线,在中学的理科学习中都要用到函数的观点解决相关问题,特别是实际问题。以及能从生活中将文集提炼成函数的模型来进行解决。所以从高一的集合开始就应该认真学习,认真总结。(以上仅代表本人愚见)。

以上就是高中函数的表示的全部内容,函数的表示法有列表法、解析式法、图象法。1、列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。列表法也有它的局限性:在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。2、解析式法:简单明了。

猜你喜欢