圆周率的历史高中?高中历史会考重点知识点汇集:一、魏晋南北朝的社会经济 江南地区快速开发:农业从江东扩展至长江流域,土地开垦、耕作技术、农田水利建设均有显著提升,农作物品种增多,单位面积产量提升。 中原地区发展相对缓慢:但仍有恢复与发展,新农具与技术得到推广。 士族庄园与寺院经济占据重要地位:影响社会经济结构。那么,圆周率的历史高中?一起来了解一下吧。
数学家的故事——祖冲之
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
数学家的故事——苏步青
苏步青1902年9月出生在浙江省平阳县的一个山村里。

一,3+1+2模式的定义
3+1+2模式是指:必考3门科目、选修2选1和选修4选2,必考科目为语文、数学、外语三门;选考科目就是“1+2”,1为从物理和历史中选一门,2为从生物、化学、地理、政治中选择两门。
二,3+1+2模式的内容
1.所谓的“3+2+1”模式,高考的满分依旧是750分,根据不同兴趣的选择共有8种组合
(1) “3”语文、数学、英语作为必考科目,分数上较以往有所变化,语文和数学分值分别为150分、英语分值为120分
(2) “2”指的是“物理、化学”、“历史、政治”两个组合,进入高中的学生需要从两个组合里面选择一个自己感兴趣的组合,组合里面各科目分值120分;
(3) “1”指的是在生物、地理和选择组合科目以外的两门,或“历史、政治”、或“物理、化学”,共四门学科中任选一门,分值为90分。
二,3+1+2模式的分值
(1)“3+1+2”模式,高考的总分则变为740分,其中根据不同兴趣的组合,足足有20种组合。
(2) “3”与前面模式中所代表的是一样的,语文、数学分值分别为150分,英语的`分值为120分;“1”指的是在物理和历史两门学科里面必须选一科,分值为120分;
(3)“2”指的是化学、生物、政治、地理以及除了必选一科的或历史、或物理,五科里面任选两门科目,每门科目的分值为100分。
华罗庚
(1910~1985)
数学家,中国科学院院士。1910年11月12日生于江苏金坛,1985年6月12日卒于日本东京。
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。
1947年小约翰-福布斯-纳什(罗素-克洛饰,Russell Crowe)进入普林斯顿大学学习并研究数学。这个"神秘的来自西弗吉尼亚的天才"并没有上预备班的经历,也没有遗产或富足的亲戚资助他进入“常春藤盟校”(Ivy League)----但普林斯顿最具声誉的奖学金证明他确实属于普林斯顿这个团队。
这对纳什或是对普林斯顿来说是很不容易的。优雅的社会交际他根本不屑一顾,上课也提不起什么兴致。他整天沉迷着的只是一件事:寻找一个真正有创意的理论。他深信这才是他应该从事的事情。
普林斯顿的数学系竞争十分激烈,纳什的一些同学也十分乐于看到纳什的失败。但是,他们仍然十分容忍他,有意无意地怂恿他当个伟人。一个晚上他与一些同学在当地洒吧娱乐,当时他们对一个热情的金发碧眼女人的反应引发了他的灵感。当纳什观察着这些竞争对手时,常常在他脑海里酝酿的想法突然变得清晰起来。他随之撰写出了关于博奕论的论文----“竞争中的数学”----大胆地将现代经济之父亚当-斯密(Adam Smith)的理论作出了不同的解释。这个已经被人们接受了150年的思想突然变得陈旧过时了,纳什的生活也从此发生了改变。
纳什后来获得了在麻省理工学院(MIT)进行研究和教学的工作,这可是一个众人觊觎的工作,但是他对这些并不满意。

数学家的故事——祖冲之
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
数学家的故事——苏步青
苏步青1902年9月出生在浙江省平阳县的一个山村里。

以上就是圆周率的历史高中的全部内容,高中历史从必修1到必修3的时间线涵盖了从战国到明清的重要事件,为我们了解中国古代历史提供了重要的参考。从战国的开端到秦朝的统一,这是一个国家从分裂走向统一的过程。这一时期,各国之间的战争不断,其中著名的战役有长平之战和马陵之战,这些战役影响了战国的局势,加速了秦国的崛起。秦朝建立后,内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。