高中文数知识点总结?8.《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。笛卡尔的观点对,点和有序实数对,两者一一来对应,开创几何新途径。两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。那么,高中文数知识点总结?一起来了解一下吧。
高中数学知识口诀
根据多年的实践,总结规律繁化简;概括知识难变易,高中数学巧记忆。
言简意赅易上口,结合课本胜一筹。始生之物形必丑,抛砖引得白玉出。
一、《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。
高中文科数学相对理科数学来说是比较简单的,但是其中的公式还是有许多。为了节省同学们整理文科数学公式的时间。下面是由我为大家整理的“高中文科数学公式总结大全”,仅供参考,欢迎大家阅读。
高中文科数学公式总结大全
一、对数函数
log.a(MN)=logaM+logN
loga(M/N)=logaM-logaN
logaM^n=nlogaM(n=R)
logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)
二、简单几何体的面积与体积
S直棱柱侧=c*h(底面周长乘以高)
S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)
设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*h
S圆柱侧=c*l
S圆台侧=1/2*(c+c′)*l=兀*(r+r′)*l
S圆锥侧=1/2*c*l=兀*r*l
S球=4*兀*R^3
V柱体=S*h
V锥体=(1/3)*S*h
V球=(4/3)*兀*R^3
三、两直线的位置关系及距离公式
(1)数轴上两点间的距离公式|AB|=|x2-x1|
(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式
|AB|=sqr[(x2-x1)^2+(y2-y1)^2]
(3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr
(A^2+B^2)
(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-
C2|/sqr(A^2+B^2)
同角三角函数的基本关系及诱导公式
sin(2*k*兀+a)=sin(a)
cos(2*k*兀+a)=cosa
tan(2*兀+a)=tana
sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana
sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana
sin(兀+a)=-sina
sin(兀-a)=sina
cos(兀+a)=-cosa
cos(兀-a)=-cosa
tan(兀+a)=tana
四、二倍角公式及其变形使用
1、二倍角公式
sin2a=2*sina*cosa
cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2
tan2a=(2*tana)/[1-(tana)^2]
2、二倍角公式的变形
(cosa)^2=(1+cos2a)/2
(sina)^2=(1-cos2a)/2
tan(a/2)=sina/(1+cosa)=(1-cosa)/sina
五、正弦定理和余弦定理
正弦定理:
a/sinA=b/sinB=c/sinC
余弦定理:
a^2=b^2+c^2-2bccosA
b^2=a^2+c^2-2accosB
c^2=a^2+b^2-2abcosC
cosA=(b^2+c^2-a^2)/2bc
cosB=(a^2+c^2-b^2)/2ac
cosC=(a^2+b^2-c^2)/2ab
tan(兀-a)=-tana
sin(兀/2+a)=cosa
sin(兀/2-a)=cosa
cos(兀/2+a)=-sina
cos(兀/2-a)=sina
tan(兀/2+a)=-cota
tan(兀/2-a)=cota
(sina)^2+(cosa)^2=1
sina/cosa=tana
两角和与差的余弦公式
cos(a-b)=cosa*cosb+sina*sinb
cos(a-b)=cosa*cosb-sina*sinb
两角和与差的正弦公式
sin(a+b)=sina*cosb+cosa*sinb
sin(a-b)=sina*cosb-cosa*sinb
两角和与差的正切公式
tan(a+b)=(tana+tanb)/(1-tana*tanb)
tan(a-b)=(tana-tanb)/(1+tana*tanb)
高中数学知识点速记口诀
1.《集合与函数》
内容子交并补集,还有幂指对函数。
第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三:数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握等可能的概率
第六:解析几何。
对于文科生来说,解析几何是最让考生头疼的部分,也是整个试卷中难度最大,计算量最高的部分。对于这一类考题,我们总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
高中数学知识口诀
根据多年的实践,总结规律繁化简;概括知识难变易,高中数学巧记忆。
言简意赅易上口,结合课本胜一筹。始生之物形必丑,抛砖引得白玉出。
一、《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。
高中数学合集
1znmI8mJTas01m1m03zCRfQ
1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
以上就是高中文数知识点总结的全部内容,高三文科数学常考知识点二 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。 对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。 箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。