数列高中题解公式?1.通项公式:an=a1+(n-1)d.2.前n项和公式:Sn=na1+n(n-1)/2d+d=(a1+an)n/2.三、等差数列的性质 1.若m,n,p,q∈N*,且m+n=p+q,{an}为等差数列,则am+an=ap+aq.2.在等差数列{an}中,ak,a2k,a3k,a4k,…仍为等差数列,公差为kd.3.若{an}为等差数列,则Sn,那么,数列高中题解公式?一起来了解一下吧。
一、等差数列的有关概念:
1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为an+1-an=d(n∈N*,d为常数).
2.等差中项:数列a,A,b成等差数列的充要条件是A=(a+b)/2,其中A叫做a,b的等差中项.
二、等差数列的有关公式
1.通项公式:an=a1+(n-1)d.
2.前n项和公式:Sn=na1+n(n-1)/2d+d=(a1+an)n/2.
三、等差数列的性质
1.若m,n,p,q∈N*,且m+n=p+q,{an}为等差数列,则am+an=ap+aq.
2.在等差数列{an}中,ak,a2k,a3k,a4k,…仍为等差数列,公差为kd.
3.若{an}为等差数列,则Sn,S2n-Sn,S3n-S2n,…仍为等差数列,公差为n2d.
4.等差数列的增减性:d>0时为递增数列,且当a1<0时前n项和Sn有最小值.d<0 a1="">0时前n项和Sn有最大值.
5.等差数列{an}的首项是a1,公差为d.若其前n项之和可以写成Sn=An2+Bn,则A=d/2,B=a1-d/2,当d≠0时它表示二次函数,数列{an}的前n项和Sn=An2+Bn是{an}成等差数列的充要条件.
四、解题方法
1.与前n项和有关的三类问题
(1)知三求二:已知a1、d、n、an、Sn中的任意三个,即可求得其余两个,这体现了方程思想.
(2)Sn=d/2*n2+(a1-d/2)n=An2+Bn?d=2A.
(3)利用二次函数的图象确定Sn的最值时,最高点的`纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.
2.设元与解题的技巧
已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…;
若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元
特别说明由于各方面情况的不断调整与变化,新课程教育在线提供的考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。
这样解:有a1+a3=10,a4+a6=80
得a1*(1+q2)=10,a4*(1+q2)=80,两式相除可得a4/a1=q3=8得q=2
故an=2^n(2的n次方)
2,记Sn=1*2+3*2^2+5*2^3+…+(2n-1)*2^n运用错位相减法可以求出结果
等差数列:
通项公式:an=a1+(n-1)d;
求和公式1:Sn=a1n +n(n-1)d/2;
求和公式2:Sn=n(a1+an)/2;
中间公式:如果m+n=2k;m,n,k∈N;则对于等差数列有:2ak=am+an;
相等公式:如果m+n=p+q;m,n,p,q∈N,则对于等差数列:am+an=ap+aq;
等比数列:
通项公式:an=a1q^(n-1);
求和公式1:Sn=a1(1-q^n)/(1-q)(q≠1);
求和公式2:Sn=(a1-anq)/(1-q)(q≠1);
中间公式:如果m+n=2k;m,n,k∈N;则对于等比数列有:(ak)²=am*an;
相等公式:如果m+n=p+q;m,n,p,q∈N,则对于等差数列:am*an=ap*aq;
解题时常用:
n=1时,a1=s1=?
n≥2时,an=Sn-S(n-1)=?
【斐波那契数列通项公式的推导】斐波那契数列:1、1、2、3、5、8、13、21、……
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,,X2=(1-√5)/2
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
迭代法
已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式
解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))
得α+β=1
αβ=-1
构造方程x²-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2
所以
an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1
an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2
由式1,式2,可得
an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3
an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4
将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
````` 参考资料: http://baike.baidu.com/view/816.htm?fr=ala0_1_1看完这个楼主该明白了吧!
以上就是数列高中题解公式的全部内容,a1+a3=a1+a1q^2=10 a4+a6=a1q^3+a1q^5=q^3(a1+a1q^2)=10q^3=80 所以,q^3=8、q=2。a1+a1q^2=a1+4a1=5a1=10、a1=2。1.数列{an}的通项公式为:an=2*2^(n-1)=2^n,n为正整数。