高中经典不等式?2、绝对值不等式公式:| |a|-|b| |≤|a-b|≤|a|+|b|。| |a|-|b| |≤|a+b|≤|a|+|b|。3、柯西不等式:设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2) 当且仅当ai=λbi(λ为常数,那么,高中经典不等式?一起来了解一下吧。
高中4个基本不等式链:
√[(a+b)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。
平方平均数≥算术平均数≥几何平均数≥调和平均数。
一、基本不等式
基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
二、基本不等式两大技巧
“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。
调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。
三、基本不等式中常用公式
(1)√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)
(2)√(ab)≤(a+b)/2。
10个常用不等式如下:
平均不等式、柯西不等式、闵可夫斯基不等式、贝努利不等式、赫尔德不等式、契比雪夫不等式、排序不等式、含有绝对值的不等式、琴生不等式、艾尔多斯-莫迪尔不等式。
不等式简介如下:
用符号“>”“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……z)≤G(x,y,……,z)(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
不等式的特殊性质如下:
1、不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。
2、不等式的两边同时乘(或除以)同一个正数,不等号的方向不变。
3、不等式的两边同时乘(或除以)同一个负数,不等号的方向变。总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。
不等式常用定理:
1、不等式F(x)
常用不等式公式:
①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。
②√(ab)≤(a+b)/2。
③a²+b²≥2ab。
④ab≤(a+b)²/4。
⑤||a|-|b| |≤|a+b|≤|a|+|b|。
原理:
①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x) ③如果不等式F(x) ④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。 高中数学基本不等式是如下: 1、基本不等式: √(ab)≤(a+b)/2,那么可以变为 a^2-2ab+b^2 ≥ 0,a^2+b^2 ≥ 2ab,ab≤a与b的平均数的平方。 2、绝对值不等式公式: | |a|-|b| |≤|a-b|≤|a|+|b|。 | |a|-|b| |≤|a+b|≤|a|+|b|。 3、柯西不等式: 设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2) 当且仅当ai=λbi(λ为常数,i=1,2.3,…n)时取等号。 4、三角不等式 对于任意两个向量b其加强的不等式,这个不等式也可称为向量的三角不等式。 5、四边形不等式 如果对于任意的a1≤a2 基本性质 ①如果x>y,那么y ②如果x>y,y>z;那么x>z(传递性)。 高中四个均值不等式推到如下: 一、简单的线性计划问题 例1,设函数f(0)=3sin0+cos0,其中,角目的顶点和坐标原点重合,始边和x轴非负半轴重合,终边经过点·P(x,y),且“0≤0<@n@。 (1)若点P的坐标为12,32,f(0)的值。 (2)若点P(x,y)为平面区域Q:xty1,xl,y<1.上的一个动试确定角的取值范围,并求函数f()的最小值和最大值。 分析第(1)问只需要利用三角函数的定义即可:第(2)问中只要先画出平面区域Q,再依据抽画出的平面区域确定角0的取值范围,进而转化为求f(0)=asin0+bcos0型函数的最值解(1)由点P的坐标和三角函数的定义可得sin0=32,cos0=12,于是f(0)=3sin+cos=3X32+12=2。 (3)作出平面区域(即三角形区域ABC)图所表示,其中A(1,0),B(1,1),@C(0,1)。于是0≤0 以上就是高中经典不等式的全部内容,高中6个基本不等式的公式有a^2+b^2≧2ab、√ab≦(a+b)/2、b/a+a/b≧2、(a+b+c)/3≧³;√abc、a^3+b^3+c^3≧3abc、柯西不等式。1、基本不等式a^2+b^2≧2ab:针对任意的实数a,b都成立,当且仅当a=b时,等号成立。证明的过程:因为(a-b)^2≧0。高中四个常用不等式
高中的不等式公式大全