数学题高中试卷?(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的值.20.(本小题满分12分)函数f(x)=3sin2x+π6的部分图像如图1-4所示.(1)写出f(x)的最小正周期及图中x0,y0的值;(2)求f(x)在区间-π2,-π12上的值和最小值.21.(本小题满分12分)已知向量的夹角为.(1)求;(2)若,那么,数学题高中试卷?一起来了解一下吧。
心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家带来一些关于高一数学下册期末试卷及答案,希望对大家有所帮助。
试题
一选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知是第二象限角,,则()
A.B.C.D.
2.集合,,则有()
A.B.C.D.
3.下列各组的两个向量共线的是()
A.B.
C.D.
4.已知向量a=(1,2),b=(x+1,-x),且a⊥b,则x=()
A.2B.23C.1D.0
5.在区间上随机取一个数,使的值介于到1之间的概率为
A.B.C.D.
6.为了得到函数的图象,只需把函数的图象
A.向左平移个单位B.向左平移个单位
C.向右平移个单位D.向右平移个单位
7.函数是()
A.最小正周期为的奇函数B.最小正周期为的偶函数
C.最小正周期为的奇函数D.最小正周期为的偶函数
8.设,,,则()
A.B.C.D.
9.若f(x)=sin(2x+φ)为偶函数,则φ值可能是()
A.π4B.π2C.π3D.π
10.已知函数的值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则下列各式中符合条件的解析式是
A.B.
C.D.
11.已知函数的定义域为,值域为,则的值不可能是()
A.B.C.D.
12.函数的图象与曲线的所有交点的横坐标之和等于
A.2B.3C.4D.6
第Ⅱ卷(非选择题,共60分)
二、填空题(每题5分,共20分)
13.已知向量设与的夹角为,则=.
14.已知的值为
15.已知,则的值
16.函数f(x)=sin(2x-π3)的图像为C,如下结论中正确的是________(写出所有正确结论的编号).
①图像C关于直线x=1112π对称;②图像C关于点(23π,0)对称;③函数f(x)在区间[-π12,512π]内是增函数;④将y=sin2x的图像向右平移π3个单位可得到图像C.、
三、解答题:(共6个题,满分70分,要求写出必要的推理、求解过程)
17.(本小题满分10分)已知.
(Ⅰ)求的值;
(Ⅱ)求的值.
18.(本小题满分12分)如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(35,45),记∠COA=α.
(Ⅰ)求1+sin2α1+cos2α的值;
(Ⅱ)求cos∠COB的值.
19.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),
(1)若a与b-2c垂直,求tan(α+β)的值;
(2)求|b+c|的值.
20.(本小题满分12分)函数f(x)=3sin2x+π6的部分图像如图1-4所示.
(1)写出f(x)的最小正周期及图中x0,y0的值;
(2)求f(x)在区间-π2,-π12上的值和最小值.
21.(本小题满分12分)已知向量的夹角为.
(1)求;(2)若,求的值.
22.(本小题满分12分)已知向量).
函数
(1)求的对称轴。
一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)
1.不等式 的解集为▲.
2.直线 : 的倾斜角为▲.
3.在相距 千米的 两点处测量目标 ,若 , ,则 两点之间的距离是 ▲ 千米(结果保留根号).
4.圆和圆的位置关系是▲.
5.等比数列 的公比为正数,已知 , ,则 ▲.
6.已知圆 上两点 关于直线 对称,则圆 的半径为
▲ .
7.已知实数 满足条件,则 的最大值为▲ .
8.已知 , ,且 ,则▲ .
9.若数列 满足: , ( ),则 的通项公式为 ▲ .
10.已知函数, ,则函数 的值域为
▲.
11.已知函数 , ,若 且 ,则 的最小值为 ▲.
12.等比数列 的公比 ,前 项的和为 .令 ,数列 的前 项和为 ,若 对 恒成立,则实数 的最小值为▲.
13. 中,角A,B,C所对的边为 .若 ,则 的取值范围是
▲ .
14.实数 成等差数列,过点 作直线 的垂线,垂足为 .又已知点 ,则线段 长的取值范围是 ▲ .
二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)
15.(本题满分14分)
已知 的三个顶点的坐标为 .
(1)求边 上的高所在直线的方程;
(2)若直线 与 平行,且在 轴上的截距比在 轴上的截距大1,求直线 与两条坐标轴
围成的三角形的周长.
16.(本题满分14分)
在 中,角 所对的边分别为 ,且满足 .
(1)求角A的大小;
(2)若 , 的面积 ,求 的长.
17.(本题满分15分)
数列 的前 项和为 ,满足 .等比数列 满足: .
(1)求证:数列 为等差数列;
(2)若 ,求 .
18.(本题满分15分)
如图, 是长方形海域,其中 海里, 海里.现有一架飞机在该海域失事,两艘海事搜救船在 处同时出发,沿直线 、 向前联合搜索,且 (其中 、 分别在边 、 上),搜索区域为平面四边形 围成的海平面.设 ,搜索区域的面积为 .
(1)试建立 与 的关系式,并指出 的取值范围;
(2)求 的最大值,并指出此时 的值.
19.(本题满分16分)
已知圆 和点 .
(1)过点M向圆O引切线,求切线的方程;
(2)求以点M为圆心,且被直线 截得的弦长为8的圆M的方程;
(3)设P为(2)中圆M上任意一点,过点P向圆O引切线,切点为Q,试探究:平面内是否存在一定点R,使得 为定值?若存在,请求出定点R的坐标,并指出相应的定值;若不存在,请说明理由.
20.(本题满分16分)
(1)公差大于0的等差数列 的前 项和为 , 的前三项分别加上1,1,3后顺次成为某个等比数列的连续三项, .
①求数列 的通项公式;
②令 ,若对一切 ,都有 ,求 的取值范围;
(2)是否存在各项都是正整数的无穷数列 ,使 对一切 都成立,若存在,请写出数列 的一个通项公式;若不存在,请说明理由.
扬州市2013—2014学年度第二学期期末调研测试试题
高 一 数 学 参 考 答 案2014.6
1.2. 3. 4.相交 5.1 6.3
7.11 8.9. 10. 11.312. 13.
14.
15.解:(1) ,∴边 上的高所在直线的斜率为 …………3分
又∵直线过点∴直线的方程为: ,即…7分
(2)设直线 的方程为: ,即…10分
解得: ∴直线 的方程为:……………12分
∴直线 过点 三角形斜边长为
∴直线 与坐标轴围成的直角三角形的周长为 .…………14分
注:设直线斜截式求解也可.
16.解:(1)由正弦定理可得: ,
即 ;∵ ∴且不为0
∴ ∵∴ ……………7分
(2)∵∴……………9分
由余弦定理得: ,……………11分
又∵ , ∴ ,解得:………………14分
17.解:(1)由已知得: ,………………2分
且 时,
经检验 亦满足∴ ………………5分
∴ 为常数
∴ 为等差数列,且通项公式为 ………………7分
(2)设等比数列 的公比为 ,则 ,
∴ ,则 ,∴ ……………9分
①
②
① ②得:
…13分
………………15分
18.解:(1)在 中, ,
在 中, ,
∴ …5分
其中 ,解得:
(注:观察图形的极端位置,计算出 的范围也可得分.)
∴ , ………………8分
(2)∵ ,
……………13分
当且仅当 时取等号,亦即 时,
∵
答:当 时, 有最大值 .……………15分
19.解:(1)若过点M的直线斜率不存在,直线方程为: ,为圆O的切线; …………1分
当切线l的斜率存在时,设直线方程为: ,即 ,
∴圆心O到切线的距离为: ,解得:
∴直线方程为: .
综上,切线的方程为: 或……………4分
(2)点 到直线 的距离为: ,
又∵圆被直线 截得的弦长为8∴ ……………7分
∴圆M的方程为:……………8分
(3)假设存在定点R,使得 为定值,设 , ,
∵点P在圆M上∴ ,则 ……………10分
∵PQ为圆O的切线∴ ∴ ,
即
整理得: (*)
若使(*)对任意 恒成立,则……………13分
∴ ,代入得:
整理得: ,解得: 或∴ 或
∴存在定点R ,此时 为定值 或定点R ,此时 为定值 .
………………16分
20.解:(1)①设等差数列 的公差为 .
∵ ∴ ∴
∵ 的前三项分别加上1,1,3后顺次成为某个等比数列的连续三项
∴ 即 ,∴
解得: 或
∵ ∴∴ , ………4分
②∵∴∴∴ ,整理得:
∵ ∴………7分
(2)假设存在各项都是正整数的无穷数列 ,使 对一切 都成立,则
∴
∴ ,……, ,将 个不等式叠乘得:
∴ ( ) ………10分
若 ,则 ∴当 时, ,即
∵ ∴ ,令 ,所以
与 矛盾. ………13分
若 ,取 为 的整数部分,则当 时,
∴当 时, ,即
∵ ∴ ,令 ,所以
与 矛盾.
∴假设不成立,即不存在各项都是正整数的无穷数列 ,使 对一切 都成立.………16分
高考结束后,考生们相互之间都会对答案、估分,所以知道有本省的高考试题和答案非常重要,以方便自己参考核对实际考试情况。下面是我为大家整理的关于2022年高考数学全国乙卷(理科)试题答案,如果喜欢可以分享给身边的朋友喔!
2022年高考数学全国乙卷(理科)试题答案
高中数学快速提分技巧
先速度,再准确
做数学题的两个基本指标是快和准。在解决快和准这一对矛盾问题时,不妨先求快,再求准。自己计时做题,在规定时间内完成,然后自我改卷评分。先求“快”,力求做完,再求“准”。很多高考数学做不完,就是平时缺少这种高强度训练的结果。要知道,在高考中,“时间就意味着胜利”。
把“快”列为优先、第一位的因素的理由有:
第一,如上所述,现在的考试,是将熟练程度列入考察因素。要想拿高分,就必须保持一定的解题速度。
第二,从学习心理学讲,做完一件事(尽管不完善)会使人有种成就感。先有了这种成就感,再去追求完美感(少错),是符合人的学习心理的。
教材试卷化角色互换
北京市十三中的高考状元冯平平同学说,她的成绩一直很稳定,但拔不了尖。为了她很苦恼,不知道怎么做才能打破这一局面。
十年寒窗标记的生活刻度难以磨灭,伏案苦读也没法用一句“俱往矣”概括。下面是我为大家整理的2022年数学新高考一卷试题及答案,仅供参考,喜欢可以收藏分享一下哟!
数学新高考一卷试卷2022
2022数学新高考一卷答案
高中生的学习 方法 与技巧
转变认识
高中阶段学习的内容较多,知识范畴扩大,要求也提高了许多。对于许多高中生,经常这科上去了,那科又下来了,某次考试有科不及格也是常有的事。所以,转变认识,
首先,要对此有客观的认识,要认识到问题的普遍性和不可避免性。既然是正常的就不要着急烦躁,但一定要用积极的思想研究问题,要用积极的态度面对问题,要用积极的行动解决问题。
其次,要在改进学习方法上下功夫。影响学习效果的原因是多方面的,除了客观原因外,学生是否从自身实际出发选用学习方法等都直接影响着学生的学习效果。有的同学也想改进方法,但总是感到时间不够,不舍得将宝贵的时间用在学习和改进学习方法上。而统统将时间投入到具体科目的学习上,殊不知这正是犯了一个极大的错误。这里介绍的良性循环学习法对高三年级的同学是一种简便易行立竿见影的复习方法。
第 1 页
第 1 页 共 4 页
高一下学期数学测试
一、选择题 1、已知sinx=54
-,且x在第三象限,则tanx=A.
4
3.43.34.3
4DCB
2. 己知向量)2,1(a,则||aA.5.5.5.5
DCB
3.)2,1(a,)2,1(b,则ba A.(-1,4)B、3C、(0,4) D、
3
4.)2,1(a,)2,1(b,ba与所成的角为x则cosx=
A. 3B.
53
C.515D.-5
15 5.在平行四边形ABCD中,以下错误的是 A、BDABADDDBABADCACABADBBC
AD...
6、把函数y=sin2x的图象向右平移6
个单位后,得到的函数解析式是() (A)y=sin(2x+
3)(B)y=sin(2x+6)(C)y=sin(2x-3)(D)y=sin(2x-6
) 7、sin5°sin25°-sin95°sin65°的值是( ) (A)
21(B)-21(C)23 (D)-2
3
8、函数y=tan(3
2
x)的单调递增区间是() (A)(2kπ-
32,2kπ+34) kZ(B)(2kπ-35,2kπ+3
) kZ
(C)(4kπ-32,4kπ+34) kZ(D)(kπ-35,kπ+3
) kZ
9、设0<α<β<2
,sinα=53,cos(α-β)=1312
,则sinβ的值为( )
(A)
65
16 (B)6533(C)6556(D)6563
2014高中期末考试题库语文数学英语物理化学
第 2 页
第 2 页 共 4 页
10、△ABC中,已知tanA=31,tanB=2
1
,则∠C等于( )
(A)30° (B)45° (C)60° (D)135°
11、如果是第三象限的角,而且它满足2sin2cossin1,那么2
是( )
(A)第一象限角 (B)第二象限角 (C)第三象限角 (D)第四象限角
12、y=sin(2x+2
5
π)的图象的一条对称轴是( ) (A)x=-
2
(B)x=-4 (C)x=8(D)x=45
13、已知0<θ<
4
,则2sin1等于( ) (A)cosθ-sinθ (B)sinθ-cosθ (C)2cosθ(D)2cosθ
14、函数y=3sin(2x+
3
)的图象可以看作是把函数y=3sin2x的图象作下列移动而 得到()
(A)向左平移3单位(B)向右平移3
单位 (C)向左平移
6单位(D)向右平移6
单位 15、若sin2x>cos2x,则x的取值范围是() (A){x|2kπ-43π π,kZ} (C){x|kπ- 4 3 π,kZ} 二、填空题: 16、函数y=cos2x-8cosx的值域是 。 以上就是数学题高中试卷的全部内容,第一类问题是会的却做错了的题。分明会做,反而做错了的;心知肚明是很有把握的题,却没做对;还有明明会又非常简单的题,却是落笔就错;确实会,答案就在嘴边盘旋,却在考场上怎么也回忆不起来了。有时一走出考场立即就想起来了;有时试卷发下来一看,都不太相信是自己答的。