高中函数解析式的求法?一、换元法 换元法是求解函数解析式的一种重要方法。其适用条件是:对于形如f[g(x)]这样的复合函数,直接令g(x)=t,求出t的取值范围,然后反解出x,即x=h(t),再将x代入题目中告诉的关系式中就可求出f(t),最后将t全部换为x即可。使用换元法需要注意两点:令g(x)=t后,那么,高中函数解析式的求法?一起来了解一下吧。
求函数解析式的一般方法:待定系数法,
待定系数法,一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
求函数解析式常见的基本方法.主要有:待定系数法、代入法、换元法、凑配法、利用函数性质法、解方程组法、图像变换法、参数法、归纳法、赋值法、递推法、数列法、不等式法和柯西法.
待定系数法
已知函数解析式的构成形式(如一次函数、二次函数、反比例函数、函数图像等),求函数的解析式,只需根据函数类型设出含有未知字母系数的解析式;再依据题目所给的条件把已知自变量与函数的一些对应值代入所设的解析式中得到待定系数的方程(组),通过解方程(组)的方法,求出待定系数的值,从而写出函数的解析式.
图像变换法
给出函数图像的变化过程,要求确定图像所对应的函数解析式,可用图像变换法.
参数法
注:对于表达式中含有限制条件的要注意最后得到的函数 的定义域.例9中 含有一个三角函数 ,而 ,就得到 .对于含有根式、分式的也要注意取值范围.
归纳法
赋值法
若函数 满足某个条件等式,常用赋值法.赋值法的关键是根据已知条件和目标条件等式中的未知数进行恰当的赋值.
递推法
设 是定义在自然数集 上的函数, (确定的常数).如果存在一个递归(或递推)关系 ,当知道了前面 项的值, ,其中 由 可以唯一确定 的值,那么称 为 阶递归函数.递推(或递归)是解决函数解析式的重要方法.
数列法
求定义在自然数集 上的函数 ,实际上就是求数列 的通项.数列法就是利用等比、等差数列的有关知识(通项公式、求和公式)求定义在 上的函数 .
不等式法
根据 , ,则 来确定出未知函数的解析式.
柯西法
此法是一种“爬坡式”的推理方法.即首先求出自变量取自然数时,函数方程的解,然后依次求出自变量取整数、有理数、实数时,函数方程的解.
以上介绍了求 的解析式的十四种常用方法,解题的关键是根据问题的特征选择恰当的方法,有时还需几种方法融为一体.这些方法在解题中具有重要的作用.同时,由于求函数解析式的题型变化多端,大家还需在此基础上,不断探索,总结新的方法.
高中求函数解析式的方法有换元法、凑配法、待定系数法、方程组法、特殊值法、代入法、奇偶性法。
一、换元法
换元法是求解函数解析式的一种重要方法。其适用条件是:对于形如f[g(x)]这样的复合函数,直接令g(x)=t,求出t的取值范围,然后反解出x,即x=h(t),再将x代入题目中告诉的关系式中就可求出f(t),最后将t全部换为x即可。
使用换元法需要注意两点:令g(x)=t后,要能比较容易反解出x;一定要注意换元后的字母的范围!
二、凑配法
凑配法也是用于形如f[g(x)]的复合函数,但是不需要反解x,只需要将右边部分中含有x的项全部转化成g(x)的关系式,然后将g(x)全部换成x即可。
三、待定系数法
当题目告诉了函数的类型时,求函数解析式常用待定系数法。体方法:先设出函数的一般形式,如一次函数设为y=kx+b、二次函数设为y=ax^2+bx+c等,再根据题设条件求出相应的系数即可得到函数的解析式。
四、方程组法
方程组法又叫消去法,类似于二元一次方程组的解法。
求函数的解析式的方法
求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多, 求函数的解析式是函数的常见问题 , 也是高考的常规题型之一 , 方法众多 , 下面 对一些常用的方法一一辨析. 对一些常用的方法一一辨析. 换元法: g(x)) f(x)的解析式 一般的可用换元法,具体为: 的解析式, 一.换元法:已知 f(g(x)),求 f(x)的解析式,一般的可用换元法,具体为: t=g(x),在求出 f(t)可得 的解析式。 的取值范围。 令 t=g(x),在求出 f(t)可得 f(x)的解析式。换元后要确定新元 t 的取值范围。 例题 1.已知 f(3x 1)=4x 3, 求 f(x)的解析式.
x 1 练习 1.若 f ( ) = ,求 f (x) . x 1− x
2.已知 f ( x 1) = x 2 x ,求 f ( x 1)
f(g(x))内的 g(x)当做整体 当做整体, 二.配凑法:把形如 f(g(x))内的 g(x)当做整体,在解析式的右端整理成只含 配凑法: g(x)的形式 的形式, g(x)用 代替。 有 g(x)的形式,再把 g(x)用 x 代替。 一般的利用完全平方公式 1 1 例题 2.已知 f ( x − ) = x 2 2 , 求 f (x) 的解析式. x x
练习 3.若 f ( x 1) = x 2 x ,求 f (x) .
待定系数法:已知函数模型( 一次函数,二次函数,指数函数等 数等) 三.待定系数法:已知函数模型(如:一次函数,二次函数,指数函数等)求 解析式,首先设出函数解析式, 解析式,首先设出函数解析式,根据已知条件代入求系数 例 3. (1)已知一次函数 f ( x ) 满足 f (0) = 5 ,图像过点 ( −2,1) ,求 f ( x ) ;
(2)已知二次函数 g ( x ) 满足 g (1) = 1 , g ( −1) = 5 ,图像过原点,求 g ( x ) ;
(3)已知二次函数 h( x) 与 x 轴的两交点为 ( −2, 0) , (3, 0) ,且 h(0) = −3 ,求 h( x) ;
(4)已知二次函数 F ( x ) ,其图像的顶点是 ( −1, 2) ,且经过原点,求 F ( x ) .
练习 4.设二次函数 f (x) 满足 f ( x − 2) = f (− x − 2) ,且图象在 y 轴上截距为 1,在 x 轴上截得的线段长为 2 2 ,求 f (x) 的表达式.
5. 设 f (x) 是一次函数,且 f [ f ( x)] = 4 x 3 ,求 f (x)
四.解方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程,组成 解方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程, 方程组, 方程组,利用消元法求 f(x)的解析式 例题 4.设函数 f (x) 是定义(-∞,0)∪(0,∞)在上的函数,且满足关系式
1 3 f ( x) 2 f ( ) = 4 x ,求 f (x) 的解析式. x
练习 6.若 f ( x) f (
x −1 ) = 1 x ,求 f (x) . x
7.
设 f (x) 为偶函数, g (x) 为奇函数,又 f ( x) g ( x) =
1 , 试求 f ( x)和g ( x) 的 x −1
解析式
f(x)的解析式 的解析式, 五.利用给定的特性求解析式;一般为已知 x>0 时, f(x)的解析式,求 x<0 时, 利用给定的特性求解析式 一般为已知 f(x)的解析式 的解析式。
原式=1/3若y=f(x)与x=f-1(y)互为反函数,则f(f-1(x))=x。
即反函数代入原来函数里面得到的结果就是本身.cos(arccos1/3)=1/3sin(arccos1/3)^2+cos(arccos1/3)^2=1sin(arccos1/3)^2=1-(1/3)^2=8/9arccos1/3在[0,Pi/2]之间,sin(arccos1/3)>0所以sin(arccos1/3)=(2/3)根号2
以上就是高中函数解析式的求法的全部内容,待定系数法:已知函数模型( 一次函数,二次函数,指数函数等 数等) 三.待定系数法:已知函数模型(如:一次函数,二次函数,指数函数等)求 解析式,首先设出函数解析式, 解析式,首先设出函数解析式,根据已知条件代入求系数 例 3. (1)已知一次函数 f ( x ) 满足 f (0) = 5 。