高中数学立体几何公式?高中立体几何所有公式如下:1、正方体a-边长S=6a2;V=a3。2、长方体a-长;b-宽;c-高;S=2(ab+ac+bc);V=abc。3、圆柱r-底半径;h-高;C—底面周长;S底—底面积;S侧—侧面积。S表—表面积,那么,高中数学立体几何公式?一起来了解一下吧。
长方体体积公式:v=abc(体积=长x宽x高),长方体表面积公式:S=2(ab+bc+ca)。正方体表面积公式:S=6(a²),正方体体积公式:V=a³,a是棱长。
长方体正方体的公式主要就是体积和表面积的计算公式,分别如下:
1、长方体体积公式:v=abc(体积=长x宽x高),因为长x宽是长方体的底面积,所以这个公式又可以演变为:长方体体积=底面积× 高,即V=Sh(S是底面积)
2、长方体表面积公式:S=2(ab+bc+ca)
3、正方体表面积公式:S=6(a²),其中a*a为一个面的面积,正方体每个面的面积相等,所以是6倍。
4、正方体体积公式:V=a³。
扩展资料:
长方体的特征:
(1) 长方体有6个面。每组相对的面完全相同。
(2) 长方体有12条棱,相对的四条棱长度相等。按长度可分为三组,每一组有4条棱。
(3) 长方体有8个顶点。每个顶点连接三条棱。三条棱分别叫做长方体的长,宽,高。
(4) 长方体相邻的两条棱互相垂直。
正方体的特征:
(1)正方体有8个顶点,每个顶点连接三条棱。
(2)正方体有12条棱,每条棱长度相等。
(3)正方体有6个面,每个面面积相等。
立体几何公式大全
核心提示:长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方...
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积=底×高÷2
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=半径×2 半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)
的体积=底面积×高
平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a
S=a2
长方形 a和b-边长 C=2(a+b)
S=ab
三角形 a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四边形 d,D-对角线长
α-对角线夹角 S=dD/2·sinα
平行四边形 a,b-边长
h-a边的高
α-两边夹角 S=ah
=absinα
菱形 a-边长
α-夹角
D-长对角线长
d-短对角线长 S=Dd/2
=a2sinα
梯形 a和b-上、下底长
h-高
m-中位线长 S=(a+b)h/2
=mh
圆 r-半径
d-直径 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半径
a—圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数 S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圆环 R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径 S=π(R2-r2)
=π(D2-d2)/4
椭圆 D-长轴
d-短轴 S=πDd/4
立方图形
名称 符号 面积S和体积V
正方体 a-边长 S=6a2
V=a3
长方体 a-长
b-宽
c-高 S=2(ab+ac+bc)
V=abc
棱柱 S-底面积
h-高 V=Sh
棱锥 S-底面积
h-高 V=Sh/3
棱台 S1和S2-上、下底面积
h-高 V=h[S1+S2+(S1S1)1/2]/3
拟柱体 S1-上底面积
S2-下底面积
S0-中截面积
h-高 V=h(S1+S2+4S0)/6
圆柱 r-底半径
h-高
C—底面周长
S底—底面积
S侧—侧面积
S表—表面积 C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h
=πr2h
空心圆柱 R-外圆半径
r-内圆半径
h-高 V=πh(R2-r2)
直圆锥 r-底半径
h-高 V=πr2h/3
圆台 r-上底半径
R-下底半径
h-高 V=πh(R2+Rr+r2)/3
球 r-半径
d-直径 V=4/3πr3=πd2/6
球缺 h-球缺高
r-球半径
a-球缺底半径 V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半径
h-高 V=πh[3(r12+r22)+h2]/6
圆环体 R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径 V=2π2Rr2
=π2Dd2/4
桶状体 D-桶腹直径
d-桶底直径
h-桶高 V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)
长方体的表面积=长×宽×2+宽×高×2+长×高×2,或:长方体的表面积=(长×宽+宽×高+长×高)×2。
长方体的体积=长×宽×高。
正方体的表面积=底面积×6=棱长×棱长×6。
正方体的体积(或叫做正方体的容积)=棱长×棱长×棱长。
扩展资料
长方体的特征:
(1) 长方体有6个面。每组相对的面完全相同。
(2) 长方体有12条棱,相对的四条棱长度相等。按长度可分为三组,每一组有4条棱。
(3) 长方体有8个顶点。每个顶点连接三条棱。三条棱分别叫做长方体的长,宽,高。
(4) 长方体相邻的两条棱互相垂直 。
正方体的特征:
〔1〕正方体有8个顶点,每个顶点连接三条棱。
〔2〕正方体有12条棱,每条棱长度相等。
(3)正方体有6个面,每个面面积相等。
参考资料:百度百科长方体词条百度百科正方体词条
立体几何公式
名称
符号
面积S
体积V
正方体
a——边长
S=6a^2
V=a^3
长方体
a——长
S=2(ab+ac+bc)
V=abc
b——宽
c——高
棱柱
S——底面积
V=Sh
h——高
棱锥
S——底面积
V=Sh/3
h——高
棱台
S1和S2——上、下底面积
V=h〔S1+S2+√(S1^2)/2〕/3
h——高
拟柱体
S1——上底面积
V=h(S1+S2+4S0)/6
S2——下底面积
S0——中截面积
h——高
圆柱
r——底半径
C=2πr
V=S底h=∏rh
h——高
C——底面周长
S底——底面积
S底=πR^2
S侧——侧面积
S侧=Ch
S表——表面积
S表=Ch+2S底
S底=πr^2
空心圆柱
R——外圆半径
r——内圆半径
h——高
V=πh(R^2-r^2)
直圆锥
r——底半径
h——高
V=πr^2h/3
圆台
r——上底半径
R——下底半径
h——高
V=πh(R^2+Rr+r^2)/3
球
r——半径
d——直径
V=4/3πr^3=πd^2/6
球缺
h——球缺高
r——球半径
a——球缺底半径
a^2=h(2r-h)
V=πh(3a^2+h^2)/6
=πh2(3r-h)/3
球台
r1和r2——球台上、下底半径
h——高
V=πh[3(r12+r22)+h2]/6
圆环体
R——环体半径
D——环体直径
r——环体截面半径
d——环体截面直径
V=2π^2Rr^2
=π^2Dd^2/4
桶状体
D——桶腹直径
d——桶底直径
h——桶高
V=πh(2D^2+d2^)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D^2+Dd+3d^2/4)/15
(母线是抛物线形)
高中立体几何所有公式如下:
1、正方体a-边长S=6a2;V=a3。
2、长方体a-长;b-宽;c-高;S=2(ab+ac+bc);V=abc。
3、圆柱r-底半径;h-高;C—底面周长;S底—底面积;S侧—侧面积。S表—表面积,C=2πr,S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。
4、空心圆柱R-外圆半径;r-内圆半径;h-高;V=πh(R2-r2)。
5、直圆锥r-底半径;h-高V=πr2h/3。
6、圆台r-上底半径R-下底半径h-高,V=πh(R2+Rr+r2)/3。
7、棱柱S-底面积;h-高;V=Sh。
8、棱锥S-底面积h-高;V=Sh/3。
9、棱台S1和S2-上、下底面积h-高;V=h[S1+S2+(S1S1)1/2]/3。
10、拟柱体S1-上底面积;S2-下底面积;S0-中截面积;h-高;V=h(S1+S2+4S0)/6。
11、球r-半径;d-直径,V=4/3πr3=πd2/6。
12、球缺h-球缺高;r-球半径;a-球缺底半径,V=πh(3a2+h2)/6=πh2(3r-h)/3,a2=h(2r-h)。
13、球台r1和r2-球台上、下底半径;h-高,V=πh[3(r12+r22)+h2]/6。
以上就是高中数学立体几何公式的全部内容,正方形边长a,C=4a,S=a2 长方形边长a和b,C=2(a+b),S=ab 三角形边长a,b,c,a边上的高h,周长的一半s,内角A,B,C,其中s=(a+b+c)/2。