高中数学立体几何公式,立体几何经典例题30道及答案

  • 高中数学
  • 2024-03-31

高中数学立体几何公式?高中立体几何所有公式如下:1、正方体a-边长S=6a2;V=a3。2、长方体a-长;b-宽;c-高;S=2(ab+ac+bc);V=abc。3、圆柱r-底半径;h-高;C—底面周长;S底—底面积;S侧—侧面积。S表—表面积,那么,高中数学立体几何公式?一起来了解一下吧。

高考立体几何公式总结

长方体体积公式:v=abc(体积=长x宽x高),长方体表面积公式:S=2(ab+bc+ca)。正方体表面积公式:S=6(a²),正方体体积公式:V=a³,a是棱长。

长方体正方体的公式主要就是体积和表面积的计算公式,分别如下:

1、长方体体积公式:v=abc(体积=长x宽x高),因为长x宽是长方体的底面积,所以这个公式又可以演变为:长方体体积=底面积× 高,即V=Sh(S是底面积)

2、长方体表面积公式:S=2(ab+bc+ca)

3、正方体表面积公式:S=6(a²),其中a*a为一个面的面积,正方体每个面的面积相等,所以是6倍。

4、正方体体积公式:V=a³。

扩展资料:

长方体的特征:

(1) 长方体有6个面。每组相对的面完全相同。

(2) 长方体有12条棱,相对的四条棱长度相等。按长度可分为三组,每一组有4条棱。

(3) 长方体有8个顶点。每个顶点连接三条棱。三条棱分别叫做长方体的长,宽,高。

(4) 长方体相邻的两条棱互相垂直。

正方体的特征:

(1)正方体有8个顶点,每个顶点连接三条棱。

(2)正方体有12条棱,每条棱长度相等。

(3)正方体有6个面,每个面面积相等。

高中数学二面角公式

立体几何公式大全

核心提示:长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方...

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积=底×高÷2

平行四边形的面积=底×高

梯形的面积=(上底+下底)×高÷2

直径=半径×2 半径=直径÷2

圆的周长=圆周率×直径=

圆周率×半径×2

圆的面积=圆周率×半径×半径

长方体的表面积=

(长×宽+长×高+宽×高)×2

长方体的体积 =长×宽×高

正方体的表面积=棱长×棱长×6

正方体的体积=棱长×棱长×棱长

圆柱的侧面积=底面圆的周长×高

圆柱的表面积=上下底面面积+侧面积

圆柱的体积=底面积×高

圆锥的体积=底面积×高÷3

长方体(正方体、圆柱体)

的体积=底面积×高

平面图形

名称 符号 周长C和面积S

正方形 a—边长 C=4a

S=a2

长方形 a和b-边长 C=2(a+b)

S=ab

三角形 a,b,c-三边长

h-a边上的高

s-周长的一半

A,B,C-内角

其中s=(a+b+c)/2 S=ah/2

=ab/2·sinC

=[s(s-a)(s-b)(s-c)]1/2

=a2sinBsinC/(2sinA)

四边形 d,D-对角线长

α-对角线夹角 S=dD/2·sinα

平行四边形 a,b-边长

h-a边的高

α-两边夹角 S=ah

=absinα

菱形 a-边长

α-夹角

D-长对角线长

d-短对角线长 S=Dd/2

=a2sinα

梯形 a和b-上、下底长

h-高

m-中位线长 S=(a+b)h/2

=mh

圆 r-半径

d-直径 C=πd=2πr

S=πr2

=πd2/4

扇形 r—扇形半径

a—圆心角度数

C=2r+2πr×(a/360)

S=πr2×(a/360)

弓形 l-弧长

b-弦长

h-矢高

r-半径

α-圆心角的度数 S=r2/2·(πα/180-sinα)

=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2

=παr2/360 - b/2·[r2-(b/2)2]1/2

=r(l-b)/2 + bh/2

≈2bh/3

圆环 R-外圆半径

r-内圆半径

D-外圆直径

d-内圆直径 S=π(R2-r2)

=π(D2-d2)/4

椭圆 D-长轴

d-短轴 S=πDd/4

立方图形

名称 符号 面积S和体积V

正方体 a-边长 S=6a2

V=a3

长方体 a-长

b-宽

c-高 S=2(ab+ac+bc)

V=abc

棱柱 S-底面积

h-高 V=Sh

棱锥 S-底面积

h-高 V=Sh/3

棱台 S1和S2-上、下底面积

h-高 V=h[S1+S2+(S1S1)1/2]/3

拟柱体 S1-上底面积

S2-下底面积

S0-中截面积

h-高 V=h(S1+S2+4S0)/6

圆柱 r-底半径

h-高

C—底面周长

S底—底面积

S侧—侧面积

S表—表面积 C=2πr

S底=πr2

S侧=Ch

S表=Ch+2S底

V=S底h

=πr2h

空心圆柱 R-外圆半径

r-内圆半径

h-高 V=πh(R2-r2)

直圆锥 r-底半径

h-高 V=πr2h/3

圆台 r-上底半径

R-下底半径

h-高 V=πh(R2+Rr+r2)/3

球 r-半径

d-直径 V=4/3πr3=πd2/6

球缺 h-球缺高

r-球半径

a-球缺底半径 V=πh(3a2+h2)/6

=πh2(3r-h)/3

a2=h(2r-h)

球台 r1和r2-球台上、下底半径

h-高 V=πh[3(r12+r22)+h2]/6

圆环体 R-环体半径

D-环体直径

r-环体截面半径

d-环体截面直径 V=2π2Rr2

=π2Dd2/4

桶状体 D-桶腹直径

d-桶底直径

h-桶高 V=πh(2D2+d2)/12

(母线是圆弧形,圆心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15

(母线是抛物线形)

立体几何公式汇总

长方体的表面积=长×宽×2+宽×高×2+长×高×2,或:长方体的表面积=(长×宽+宽×高+长×高)×2。

长方体的体积=长×宽×高。

正方体的表面积=底面积×6=棱长×棱长×6。

正方体的体积(或叫做正方体的容积)=棱长×棱长×棱长。

扩展资料

长方体的特征:

(1) 长方体有6个面。每组相对的面完全相同。

(2) 长方体有12条棱,相对的四条棱长度相等。按长度可分为三组,每一组有4条棱。

(3) 长方体有8个顶点。每个顶点连接三条棱。三条棱分别叫做长方体的长,宽,高。

(4) 长方体相邻的两条棱互相垂直 。

正方体的特征:

〔1〕正方体有8个顶点,每个顶点连接三条棱。

〔2〕正方体有12条棱,每条棱长度相等。

(3)正方体有6个面,每个面面积相等。

参考资料:百度百科长方体词条百度百科正方体词条

高中立体几何特殊公式

立体几何公式

名称

符号

面积S

体积V

正方体

a——边长

S=6a^2

V=a^3

长方体

a——长

S=2(ab+ac+bc)

V=abc

b——宽

c——高

棱柱

S——底面积

V=Sh

h——高

棱锥

S——底面积

V=Sh/3

h——高

棱台

S1和S2——上、下底面积

V=h〔S1+S2+√(S1^2)/2〕/3

h——高

拟柱体

S1——上底面积

V=h(S1+S2+4S0)/6

S2——下底面积

S0——中截面积

h——高

圆柱

r——底半径

C=2πr

V=S底h=∏rh

h——高

C——底面周长

S底——底面积

S底=πR^2

S侧——侧面积

S侧=Ch

S表——表面积

S表=Ch+2S底

S底=πr^2

空心圆柱

R——外圆半径

r——内圆半径

h——高

V=πh(R^2-r^2)

直圆锥

r——底半径

h——高

V=πr^2h/3

圆台

r——上底半径

R——下底半径

h——高

V=πh(R^2+Rr+r^2)/3

r——半径

d——直径

V=4/3πr^3=πd^2/6

球缺

h——球缺高

r——球半径

a——球缺底半径

a^2=h(2r-h)

V=πh(3a^2+h^2)/6

=πh2(3r-h)/3

球台

r1和r2——球台上、下底半径

h——高

V=πh[3(r12+r22)+h2]/6

圆环体

R——环体半径

D——环体直径

r——环体截面半径

d——环体截面直径

V=2π^2Rr^2

=π^2Dd^2/4

桶状体

D——桶腹直径

d——桶底直径

h——桶高

V=πh(2D^2+d2^)/12

(母线是圆弧形,圆心是桶的中心)

V=πh(2D^2+Dd+3d^2/4)/15

(母线是抛物线形)

线面关系的八大定理公式图文

高中立体几何所有公式如下:

1、正方体a-边长S=6a2;V=a3。

2、长方体a-长;b-宽;c-高;S=2(ab+ac+bc);V=abc。

3、圆柱r-底半径;h-高;C—底面周长;S底—底面积;S侧—侧面积。S表—表面积,C=2πr,S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。

4、空心圆柱R-外圆半径;r-内圆半径;h-高;V=πh(R2-r2)。

5、直圆锥r-底半径;h-高V=πr2h/3。

6、圆台r-上底半径R-下底半径h-高,V=πh(R2+Rr+r2)/3。

7、棱柱S-底面积;h-高;V=Sh。

8、棱锥S-底面积h-高;V=Sh/3。

9、棱台S1和S2-上、下底面积h-高;V=h[S1+S2+(S1S1)1/2]/3。

10、拟柱体S1-上底面积;S2-下底面积;S0-中截面积;h-高;V=h(S1+S2+4S0)/6。

11、球r-半径;d-直径,V=4/3πr3=πd2/6。

12、球缺h-球缺高;r-球半径;a-球缺底半径,V=πh(3a2+h2)/6=πh2(3r-h)/3,a2=h(2r-h)。

13、球台r1和r2-球台上、下底半径;h-高,V=πh[3(r12+r22)+h2]/6。

以上就是高中数学立体几何公式的全部内容,正方形边长a,C=4a,S=a2 长方形边长a和b,C=2(a+b),S=ab 三角形边长a,b,c,a边上的高h,周长的一半s,内角A,B,C,其中s=(a+b+c)/2。

猜你喜欢