高中所学的函数,高中数学

  • 高中数学
  • 2024-05-24

高中所学的函数?高中数学八大函数是如下:1、y=c(c为常数)y'=0。2、y=x^n y'=nx^(n-1)。3、y=a^x y'=a^xlna y=e^x y'=e^x。4、y=logax y'=logae/x y=lnx y'=1/x。5、y=sinx y'=cosx。6、y=cosx y'=-sinx。7、y=tanx y'=1/cos^2x。8、y=cotx y'=-1/sin^2x。那么,高中所学的函数?一起来了解一下吧。

一次函数的图像及性质

常见函数类型有:一次函数、二次函数、三次函数、四次函数;基本初等函数包括幂函数、指数函数、对数函数、三角函数、反三角函数和常数函数。

精确地说,设X为一个非空集合,Y为非空数集,f为对应法则,若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应,就称对应法则f是X上的一个函数。

函数有许多种,在高中阶段的函数包括:

1、一次函数y=ax+b

2、二次函数y=ax2+b

3、指数函数

4、对数函数

5、幂函数

6、三角函数

高中理科有哪些课程

函数的解析式与定义域

1求函数值域的方法

①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;

②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且 ∈R的分式;

④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);

⑤单调性法:利用函数的单调性求值域;

⑥图象法:二次函数必画草图求其值域;

⑦利用对号函数

⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

函数的奇偶性

1.定义: 设y=f(x),x∈A,如果对于任意 ∈A,都有 ,则称y=f(x)为偶函数。

如果对于任意 ∈A,都有 ,则称y=f(x)为奇

函数。

2.性质:

①y=f(x)是偶函数 y=f(x)的图象关于 轴对称, y=f(x)是奇函数 y=f(x)的图象关于原点对称,

②若函数f(x)的定义域关于原点对称,则f(0)=0

③奇±奇=奇偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[两函数的定义域D1 ,D2,D1∩D2要关于原点对称]

3.奇偶性的判断

①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系 一、函数的概念与表示

1、映射

(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

函数的性质

高中数学公式一览表如下:

1、函数与方程:一次函数:y=kx+b。二次函数:y=ax²+bx+c。反比例函数:y=k/x。指数函数:y=ax(a>0且a≠1)。对数函数:y=logax(a>0且a≠1)。正弦函数:y=sinx。余弦函数:y=cosx。正切函数:y=tanx

2、反正弦函数:y=asinx。反余弦函数:y=acosx。正切函数:y=atanx。反正切函数:y=atanx。方程的根:x=(-b±sqrt(b²-4ac))/(2a)。

3、三角函数与平面向量:角度制与弧度制:角度制下,角度范围是(0,360°),弧度制下,角度范围是(-π,π)。三角函数的定义:sin(θ)=y/r,cos(θ)=x/r,tan(θ)=y/x,cot(θ)=x/y。

4、平面向量的基本概念:向量是具有大小和方向的量,可以用一条有向线段表示,线段长度代表向量大小,箭头所指方向代表向量方向。零向量长度为0。向量的加减法:向量相加(减)等于两个向量对应分量相加(减)。

高中数学公式的作用

1、简化计算:数学公式可以帮助我们简化复杂的计算过程,提高解题效率。

数学函数公式大全及图解

高中十二种基本函数如下:

基本初等函数包括幂函数、指数函数、对数函数、三角函数、反三角函数和常数函数。

函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系有且不止一个。最后,要重点理解函数的三要素。

函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。

概念:

在一个变化过程中,发生变化的量叫变量(数学中,变量为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。

自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。

因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。

函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。

三角函数:

三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。

高中有几种函数

高中数学八大函数是:幂函数,指数函数,对数函数,反函数,一次函数,二次函数,反比例函数,对勾函数。

函数的性质:

折叠函数有界性:设函数f(x)的定义域为D,数集X包含于D。如果存在数K1,使得f(x)≤K1对任一x∈X都成立,则称函数f(x)在X上有上界,而K1称为函数f(x)在X上的一个上界。

如果存在数K2,使得f(x)≥K2对任一x∈X都成立,则称函数f(x)在X上有下界,而K2称为函数f(x)在X上的一个下界。如果存在正数M,使得|f(x)|≤M对任一x∈X都成立,则称函数f(x)在X上有界,如果这样的M不存在,就称函数f(x)在X上无界。

函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。

折叠函数的单调性:设函数f(x)的定义域为D,区间I包含于D。如果对于区间I上任意两点x1及x2,当x1

如果对于区间I上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调减少的。单调增加和单调减少的函数统称为单调函数。

以上就是高中所学的函数的全部内容,高中十二种基本函数如下:基本初等函数包括幂函数、指数函数、对数函数、三角函数、反三角函数和常数函数。函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系有且不止一个。最后,要重点理解函数的三要素。函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的。

猜你喜欢