高中的函数公式?1、sin(A+B) = sinAcosB+cosAsinB。2、sin(A-B) = sinAcosB-cosAsinB。3、cos(A+B) = cosAcosB-sinAsinB。4、cos(A-B) = cosAcosB+sinAsinB。5、tan(A+B) = (tanA+tanB)/(1-tanAtanB)。6、tan(A-B) = (tanA-tanB)/(1+tanAtanB)。7、那么,高中的函数公式?一起来了解一下吧。
高中数学中有许多重要的公式,以下是一些必须记住的公式:
1.三角函数公式:正弦、余弦和正切函数的基本关系式,如sin^2(x)+cos^2(x)=1,tan(x)=sin(x)/cos(x)等。
2.二次函数公式:二次函数的标准形式y=ax^2+bx+c,其中a、b和c是常数,还有顶点坐标公式(-b/2a,4ac-b^2/4a)。
3.三角形面积公式:根据海伦公式,三角形的面积S=√[p(p-a)(p-b)(p-c)],其中a、b和c是三角形的三边长,p是半周长,即(a+b+c)/2。
4.圆的面积和周长公式:圆的面积A=πr^2,圆的周长C=2πr,其中r是圆的半径。
5.导数公式:求函数的导数时,基本的导数公式包括常数、幂函数、指数函数、对数函数、三角函数等的导数公式。
6.积分公式:求函数的积分时,基本的积分公式包括常数、幂函数、指数函数、对数函数、三角函数等的积分公式。
7.三角恒等式:例如正弦定理sinA/a=sinB/b=sinC/c,余弦定理cosA=(b^2+c^2-a^2)/(2bc),以及勾股定理a^2+b^2=c^2等。
8.概率公式:概率的基本公式包括加法法则、乘法法则、条件概率、独立事件等。
基本初等函数导数公式主要有以下
y=f(x)=c (c为常数),则f'(x)=0
f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方)
f(x)=sinx f'(x)=cosx
f(x)=cosx f'(x)=-sinx
f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x f'(x)=e^x
f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)
f(x)=lnx f'(x)=1/x (x>0)
f(x)=tanx f'(x)=1/cos^2 x
f(x)=cotx f'(x)=- 1/sin^2 x
导数运算法则如下
(f(x)+/-g(x))'=f'(x)+/- g'(x)
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB ?
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA) ?
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A = 2tanA/(1-tan^2 A)
Sin2A=2SinA•CosA
Cos2A = Cos^2 A--Sin^2 A
=2Cos^2 A—1
=1—2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)^3;
cos3A = 4(cosA)^3 -3cosA
tan3a = tan a • tan(π/3+a)• tan(π/3-a)
半角公式
sin(A/2) = √{(1--cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1--cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)} ?
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
其它公式
a•sin(a)+b•cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]
a•sin(a)-b•cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b]
1+sin(a) = [sin(a/2)+cos(a/2)]^2;
1-sin(a) = [sin(a/2)-cos(a/2)]^2;;
其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)

sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB �
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA) �
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
[编辑本段]倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=2tanA/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A) )
[编辑本段]三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
cosα=sin(90-α)
[编辑本段]半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
[编辑本段]和差化积
sinθ+sinφ = 2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ = 2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ = 2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ = -2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
[编辑本段]积化和差
sinαsinβ = -1/2*[cos(α+β)-cos(α-β)]
cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]
sinαcosβ = 1/2*[sin(α+β)+sin(α-β)]
cosαsinβ = 1/2*[sin(α+β)-sin(α-β)]
[编辑本段]诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tanA= sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα

公式一:同角关系
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系
sin(kπ+α)=-sinα k∈z
cos(kπ+α)=-cosα k∈z
tan(kπ+α)=tanα k∈z
cot(kπ+α)=cotα k∈z
公式三: 任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六: π/2±α与α的三角函数值之间的关系
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
诱导公式记忆口诀:“奇变偶不变,符号看象限”。

以上就是高中的函数公式的全部内容,常用导数公式:1.y=c(c为常数),y'=0 、2.y=x^n,y'=nx^(n-1) 、3.y=a^x,y'=a^xlna,y=e^x y'=e^x、4.y=logax,y'=﹙logae﹚/x,y=lnx y'=1/x、5.y=sinx,y'=cosx、6.y=cosx,y'=-sinx 一、 C'=0(C为常数函数)二、。