二次函数知识点高中?1、抛物线与轴交点:(由的值来决定)与轴总有交点坐标为,;的值与轴交点草图 与轴交点在轴上方 与轴交点为坐标原点 与轴交点在轴下方 2、抛物线与轴交点:(由b2-4ac的值来决定)求与轴的交点坐标,那么,二次函数知识点高中?一起来了解一下吧。
是不v新客户BVIKCXGVQDBLICQVEDCFIQFV、 NBXJ多大曾经的vc看我长江,我才、就, V爱的、看爱吃、 爱慕你的错卡角度看擦调查V刊哈vc的 、吧吧客户的保持健康
二次函数知识点较多,归纳为2点
1.二次函数的基本性质:包括二次函数代数特征和几何形态
代数特征:解析式有一般式、顶点式、交点式三种形式
几何形态:抛物线开口、顶点、对称轴、截距
2.二次函数的延伸知识:
二次不等式的解法
二次方程根系关系
在数学中,二次函数的最高阶必须是二次的。在数学中,二次函数主要研究学生对公式的应用,是数学知识的重点。二次函数知识点总结有哪些?一起来看看二次函数知识点总结,欢迎查阅!
数学二次函数知识点归纳
计算方法
1.样本平均数:⑴ ;⑵若 , ,…, ,则 (a―常数, , ,…, 接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴ ;⑵若 , ,…, ,则 (a―接近 、 、…、 的平均数的较“整”的常数);若 、 、…、 较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:
三、 应用举例(略)
初三数学知识点:第四章 直线形
★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆ 内容提要☆
一、 直线、相交线、平行线
1.线段、射线、直线三者的区别与联系
从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
4.两点间的距离(三个距离:点-点;点-线;线-线)
5.角(平角、周角、直角、锐角、钝角)
6.互为余角、互为补角及表示方法
7.角的平分线及其表示
8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)
9.对顶角及性质
10.平行线及判定与性质(互逆)(二者的区别与联系)
11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
的符号
开口方向
顶点坐标
对称轴
性质
向上
轴
时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下
轴
时,随的增大而减小;时,随的增大而增大;时,有最大值.
2.的性质:
上加下减。
的符号
开口方向
顶点坐标
对称轴
性质
向上
轴
时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下
轴
时,随的增大而减小;时,随的增大而增大;时,有最大值.
3.的性质:
左加右减。
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下
X=h
时,随的增大而减小;时,随的增大而增大;时,有最大值.
4.的性质:
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下
X=h
时,随的增大而减小;时,随的增大而增大;时,有最大值.
I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a III.二次函数的图像 在平面直角坐标系中作出二次函数y=x²的图像, 可以看出,二次函数的图像是一条抛物线。 IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P [ -b/2a ,(4ac-b^2;)/4a ]。
以上就是二次函数知识点高中的全部内容,7.二次函数知识很容易与 其它 知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的 热点 考题,往往以大题形式出现. 二次函数知识点总结大全 二次函数概念 一般地,把形如y=ax?+bx+c(其中a、b、。