高中函数定义域知识点?定义域要求:对于对数函数y = log_a,其定义域是x > 0,即所有正实数。这是因为对数函数的定义要求真数必须大于零。底数条件:虽然定义域主要关注x的取值范围,但也要注意底数a的取值条件,即a必须大于0且不等于1。这是对数函数的基本定义要求。重点内容:对数函数的定义域是所有正实数,即。那么,高中函数定义域知识点?一起来了解一下吧。
函数的定义域是:
设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应。
那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。
函数的特性:
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
一次函数:y = ax + b(a ≠ 0)。
定义域:全体实数R。
值域:全体实数R。
奇偶性:b = 0 时为奇函数;b ≠ 0 时非奇非偶。
周期性:无。
对称性:b = 0 时为中心对称;b ≠ 0 时无对称性。
单调性:a > 0 时为增函数;a < 0 时为减函数。
二次函数:y = ax^2 + bx + c(a ≠ 0)。
定义域:全体实数R。
值域:a > 0 时为[ (4ac-b^2)/4a, +∞ );a < 0 时为[ -∞, (4ac-b^2)/4a )。
奇偶性:b = 0 时为偶函数;b ≠ 0 时非奇非偶。
奇偶性:非奇非偶。
周期性:无。
对称性:无。
单调性:a > 0 且 a < 1 时为减函数;a > 1 时为增函数。
其余函数类似讨论。 。。。。。。。。。。
高中函数知识点总结,参考以下内容。
一、函数的定义域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被开方数大于等于零;
3、对数的真数大于零;
4、指数函数和对数函数的底数大于零且不等于1;
5、三角函数正切函数y=tanx中xfkIT+TT/2;
6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
二、函数的解析式的常用求法:
1、定义法;
2、换元法;
3、待定系数法;
4、函数方程法;
5、参数法;
6、配方法。
三、函数的值域的常用求法:
1、换元法;
2、配方法;
3、判别式法;
4、几何法;
5、不等式法;
6、单调性法;
7、直接法。
四、函数的最值的常用求法:
1、配方法;
2、换元法;
3、不等式法;
4、几何法;
5、单调性法。
五、函数单调性的常用结论:
1、若(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。
2、若(x)为增(减)函数,则-f(x)为减(增)函数。
3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x]是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
一次函数:y = ax + b(a ≠ 0)。
定义域:全体实数R。
值域:全体实数R。
奇偶性:b = 0 时为奇函数;b ≠ 0 时非奇非偶。
周期性:无。
对称性:b = 0 时为中心对称;b ≠ 0 时无对称性。
单调性:a > 0 时为增函数;a < 0 时为减函数。
二次函数:y = ax^2 + bx + c(a ≠ 0)。
定义域:全体实数R。
值域:a > 0 时为[ (4ac-b^2)/4a, +∞ );a < 0 时为[ -∞, (4ac-b^2)/4a )。
奇偶性:b = 0 时为偶函数;b ≠ 0 时非奇非偶。
周期性:无。
对称性:b = 0 时为轴对称;b ≠ 0 时无对称性。
单调性:
a < 0 且 x ≤ -b/2a 时为增函数;a < 0 且 x ≥ -b/2a 时为减函数;
a > 0 且 x ≤ -b/2a 时为减函数;a > 0 且 x ≥ -b/2a 时为增函数。
指数函数:y = a^x(a > 0 且 a ≠ 1)。
定义域:全体实数R。
值域:( 0,+∞ )。
奇偶性:非奇非偶。
周期性:无。
对称性:无。
单调性:a > 0 且 a < 1 时为减函数;a > 1 时为增函数。
要考虑使函数没有意义的点,比如根号下x,那么x就不能小于0,所以x的定义域就是大于等于0,如果根号下x+1那么就是x+1的值域要大于等于0,解得x大于等于-1
以上就是高中函数定义域知识点的全部内容,定义域:全体实数R。值域:全体实数R。奇偶性:b = 0 时为奇函数;b ≠ 0 时非奇非偶。周期性:无。对称性:b = 0 时为中心对称;b ≠ 0 时无对称性。单调性:a > 0 时为增函数;a < 0 时为减函数。二次函数:y = ax^2 + bx + c(a ≠ 0)。定义域:全体实数R。内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。