高中文科数学23题?文科数学 本试卷共23题,共150分,共4页。考试结束后,将本试卷和答题卡一并交回。注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。那么,高中文科数学23题?一起来了解一下吧。
一、选择题:每小题5分,共60分.
1、已知集合,则集合中的元素个数为
(A) 5 (B)4 (C)3 (D)2
2、已知点,向量,则向量
(A)(B) (C) (D)
3、已知复数满足,则( )
(A)(B) (C) (D)
4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
(A)(B) (C) (D)
5、已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线的焦点重合,是C的准线与E的两个交点,则
(A)(B) (C) (D)
6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:"今有委米依垣内角,下周八尺,高五尺,问积及为米几何?"其意思为:"在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )
(A)斛 (B)斛 (C)斛 (D)斛
7、已知是公差为1的等差数列,为的前项和,若,则( )
(A)(B) (C) (D)
8、函数的部分图像如图所示,则的单调递减区间为( )
(A)
(B)
(C)
(D)
9、执行右面的程序框图,如果输入的,则输出的( )
(A)(B) (C) (D)
10、已知函数 ,且,则
(A) (B) (C) (D)
11、圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为,则 ( )
(A) (B) (C) (D)
12、设函数的图像与的图像关于直线对称,且,则 ( )
(A)(B) (C)(D)
二、填空题:本大题共4小题,每小题5分
13、数列中为的前 n 项和,若,则$n = ___ .
14.已知函数的图像在点的处的切线过点,则 ___ .
15. 若 x , y 满足约束条件 ,则的最大值为___.
16.已知是双曲线的右焦点, P 是 C 左支上一点, ,当周长最小时,该三角形的面积为___.
三、解答题
17. (本小题满分12分)
已知分别是内角的对边,.
(I)若,求
(II)若,且 求的面积.
18. (本小题满分12分)
如图四边形 ABCD 为菱形, G 为 AC 与 BD 交点,,
(I)证明:平面平面;
(II)若, 三棱锥的体积为,求该三棱锥的侧面积.
19. (本小题满分12分)
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售量y(单位:t)和年利润 z (单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
表中, =
(I)根据散点图判断,与,哪一个适宜作为年销售量y关于年宣传费 x 的回归方程类型(给出判断即可,不必说明理由);
(II)根据(I)的判断结果及表中数据,建立 y 关于 x 的回归方程;
(III)已知这种产品的年利润z与x,y的关系为 ,根据(II)的结果回答下列问题:
(i)当年宣传费时,年销售量及年利润的预报值时多少?
(ii)当年宣传费为何值时,年利润的预报值最大?
附:对于一组数据,,......,,其回归线的斜率和截距的最小二乘估计分别为:
20. (本小题满分12分)
已知过点且斜率为 k 的直线 l 与圆 C :交于 M ,N两点.
(I)求 k 的取值范围;
(II),其中 O 为坐标原点,求.
21. (本小题满分12分)
设函数.
(I)讨论的导函数的零点的个数;
(II)证明:当时.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号
22. (本小题满分10分)
选修4-1:几何证明选讲
如图 AB 是 O 直径, AC 是 O 切线, BC 交 O 与点 E .
(I)若 D 为 AC 中点,求证: DE 是 O 切线;
(II)若 ,求的大小.
23. (本小题满分10分)
选修4-4:坐标系与参数方程
在直角坐标系 中,直线,圆,以坐标原点为极点, x 轴正半轴为极轴建立极坐标系.
(I)求的极坐标方程.
(II)若直线的极坐标方程为,设的交点为,求 的面积.
24. (本小题满分10分)
选修4-5:不等式选讲
已知函数 .
(I)当 时求不等式 的解集;
(II)若 图像与 x 轴围成的三角形面积大于6,求 a 的取值范围.

每一年的高考试题都具体复习参考的意义,有利于帮助考生了解高考出题方向,下面是我分享的2022全国新高考Ⅰ卷文科数学试题及答案解析,欢迎大家阅读。
2022全国新高考Ⅰ卷文科数学试题及答案解析
2022全国新高考Ⅰ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅰ卷文科数学试题,供大家对照、估分、模拟使用。
高考数学必考知识点
圆的标准方程(_-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程_2+y2+D_+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2p_y2=-2p__2=2py_2=-2py
直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h
正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (_-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 _2+y2+D_+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2p_ y2=-2p_ _2=2py _2=-2py
直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h
正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2
圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l
弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r
锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s_h 圆柱体 V=pi_r2h
高考数学答题窍门
1、审题要慢,答题要快
有些考生只知道一味求快,往往题意未清,便匆忙动笔,结果误入歧途,即所谓欲速则不达,看错一个字可能会遗憾终生,所以审题一定要慢,有了这个“慢”,才能形成完整的合理的解题策略,才有答题的“快”。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.
答案:A
解析:∵B={x|x=n2,n∈A}={1,4,9,16},
∴A∩B={1,4}.
2.
答案:B
解析: = .
3.
答案:B
解析:由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为 .
4.
答案:C
解析:∵ ,∴ ,即 .
∵c2=a2+b2,∴ .∴ .
∵双曲线的渐近线方程为 ,
∴渐近线方程为 .故选C.
5.
答案:B
解析:由20=30知,p为假命题.令h(x)=x3-1+x2,
∵h(0)=-1<0,h(1)=1>0,
∴x3-1+x2=0在(0,1)内有解.
∴∃x∈R,x3=1-x2,即命题q为真命题.由此可知只有 p∧q为真命题.故选B.
6.
答案:D
解析: =3-2an,故选D.
7.
答案:A
解析:当-1≤t<1时,s=3t,则s∈[-3,3).
当1≤t≤3时,s=4t-t2.
∵该函数的对称轴为t=2,
∴该函数在[1,2]上单调递增,在[2,3]上单调递减.
∴smax=4,smin=3.
∴s∈[3,4].
综上知s∈[-3,4].故选A.
8.
答案:C
解析:利用|PF|= ,可得xP= .
∴yP= .∴S△POF= |OF|•|yP|= .
故选C.
9.
答案:C
解析:由f(x)=(1-cos x)sin x知其为奇函数.可排除B.当x∈ 时,f(x)>0,排除A.
当x∈(0,π)时,f′(x)=sin2x+cos x(1-cos x)=-2cos2x+cos x+1.
令f′(x)=0,得 .
故极值点为 ,可排除D,故选C.
10.
答案:D
解析:由23cos2A+cos 2A=0,得cos2A= .
∵A∈ ,∴cos A= .
∵cos A= ,∴b=5或 (舍).
故选D.
11.
答案:A
解析:该几何体为一个半圆柱与一个长方体组成的一个组合体.
V半圆柱= π×22×4=8π,
V长方体=4×2×2=16.
所以所求体积为16+8π.故选A.
12.
答案:D
解析:可画出|f(x)|的图象如图所示.
当a>0时,y=ax与y=|f(x)|恒有公共点,所以排除B,C;
当a≤0时,若x>0,则|f(x)|≥ax恒成立.
若x≤0,则以y=ax与y=|-x2+2x|相切为界限,
由 得x2-(a+2)x=0.
∵Δ=(a+2)2=0,∴a=-2.
∴a∈[-2,0].故选D.
第Ⅱ卷
本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.
二、填空题:本大题共4小题,每小题5分.
13.答案:2
解析:∵b•c=0,|a|=|b|=1,〈a,b〉=60°,∴a•b= .
∴b•c=[ta+(1-t)b]•b=0,
即ta•b+(1-t)b2=0.
∴ +1-t=0.
∴t=2.
14.答案:3
解析:画出可行域如图所示.
画出直线2x-y=0,并平移,当直线经过点A(3,3)时,z取最大值,且最大值为z=2×3-3=3.
15.答案:
解析:如图,
设球O的半径为R,
则AH= ,
OH= .
又∵π•EH2=π,∴EH=1.
∵在Rt△OEH中,R2= ,∴R2= .
∴S球=4πR2= .
16.答案:
解析:∵f(x)=sin x-2cos x= sin(x-φ),
其中sin φ= ,cos φ= .
当x-φ=2kπ+ (k∈Z)时,f(x)取最大值.
即θ-φ=2kπ+ (k∈Z),θ=2kπ+ +φ(k∈Z).
∴cos θ= =-sin φ= .
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.
解:(1)设{an}的公差为d,则Sn= .
由已知可得
解得a1=1,d=-1.
故{an}的通项公式为an=2-n.
(2)由(1)知 = ,
从而数列 的前n项和为
= .
18.
解:(1)设A药观测数据的平均数为 ,B药观测数据的平均数为 .
由观测结果可得
= (0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)
=2.3,
= (0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)
=1.6.
由以上计算结果可得 > ,因此可看出A药的疗效更好.
(2)由观测结果可绘制如下茎叶图:
从以上茎叶图可以看出,A药疗效的试验结果有 的叶集中在茎2,3上,而B药疗效的试验结果有 的叶集中在茎0,1上,由此可看出A药的疗效更好.
19.
(1)证明:取AB的中点O,连结OC,OA1,A1B.
因为CA=CB,
所以OC⊥AB.
由于AB=AA1,∠BAA1=60°,
故△AA1B为等边三角形,
所以OA1⊥AB.
因为OC∩OA1=O,所以 AB⊥平面OA1C.
又A1C⊂平面OA1C,故AB⊥A1C.
(2)解:由题设知△ABC与△AA1B都是边长为2的等边三角形,
所以OC=OA1= .
又A1C= ,则A1C2=OC2+ ,
故OA1⊥OC.
因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC-A1B1C1的高.
又△ABC的面积S△ABC= ,故三棱柱ABC-A1B1C1的体积V=S△ABC×OA1=3.
20.
解:(1)f′(x)=ex(ax+a+b)-2x-4.
由已知得f(0)=4,f′(0)=4.
故b=4,a+b=8.
从而a=4,b=4.
(2)由(1)知,f(x)=4ex(x+1)-x2-4x,
f′(x)=4ex(x+2)-2x-4=4(x+2)• .
令f′(x)=0得,x=-ln 2或x=-2.
从而当x∈(-∞,-2)∪(-ln 2,+∞)时,f′(x)>0;
当x∈(-2,-ln 2)时,f′(x)<0.
故f(x)在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.
当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).
21.
解:由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.
(1)因为圆P与圆M外切并且与圆N内切,
所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.
由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2,短半轴长为 的椭圆(左顶点除外),其方程为 (x≠-2).
(2)对于曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,
所以R≤2,当且仅当圆P的圆心为(2,0)时,R=2.
所以当圆P的半径最长时,其方程为(x-2)2+y2=4.
若l的倾斜角为90°,则l与y轴重合,可得|AB|= .
若l的倾斜角不为90°,由r1≠R知l不平行于x轴,设l与x轴的交点为Q,则 ,可求得Q(-4,0),所以可设l:y=k(x+4).
由l与圆M相切得 =1,解得k= .
当k= 时,将 代入 ,并整理得7x2+8x-8=0,解得x1,2= ,
所以|AB|= |x2-x1|= .
当k= 时,由图形的对称性可知|AB|= .
综上,|AB|= 或|AB|= .
请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.
22.
(1)证明:连结DE,交BC于点G.
由弦切角定理得,∠ABE=∠BCE.
而∠ABE=∠CBE,
故∠CBE=∠BCE,BE=CE.
又因为DB⊥BE,
所以DE为直径,∠DCE=90°,
由勾股定理可得DB=DC.
(2)解:由(1)知,∠CDE=∠BDE,DB=DC,
故DG是BC的中垂线,
所以BG= .
设DE的中点为O,连结BO,则∠BOG=60°.
从而∠ABE=∠BCE=∠CBE=30°,
所以CF⊥BF,
故Rt△BCF外接圆的半径等于 .
23.
解:(1)将 消去参数t,化为普通方程(x-4)2+(y-5)2=25,
即C1:x2+y2-8x-10y+16=0.
将 代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0.
所以C1的极坐标方程为
ρ2-8ρcos θ-10ρsin θ+16=0.
(2)C2的普通方程为x2+y2-2y=0.
由
解得 或
所以C1与C2交点的极坐标分别为 , .
24.
解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.
设函数y=|2x-1|+|2x-2|-x-3,
则y=
其图像如图所示.从图像可知,当且仅当x∈(0,2)时,y<0.
所以原不等式的解集是{x|0<x<2}.
(2)当x∈ 时,f(x)=1+a.
不等式f(x)≤g(x)化为1+a≤x+3.
所以x≥a-2对x∈ 都成立.
故 ≥a-2,即a≤ .
从而a的取值范围是 .

试题与答案
数学试题(文科)
第Ⅰ卷选择题(共50分)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)
1.已知集合 , ,则 =( A)
A. B.
C.D.
2.若复数 ( , 为虚数单位位)是纯虚数,则实数 的值为()
A.6 B.-2C.4D.-6
3.已知 ,则“ ”是“ ”的 ( B )
A.充分不必要条件B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.已知点P(x,y)在不等式组 表示的平面区域上运动,
则z=x-y的取值范围是()
A.[-2,-1] B.[-1,2]C.[-2,1] D.[1,2]
5.双曲线 的离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为()
A.B. C. D.
一年级 二年级 三年级
女生 373
男生 377 370
6.某校共有学生2000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的
学生人数为()
A.24 B.18 C.16D.12
7.平面向量 =()
A.1 B.2 C.3 D.
8.在等差数列 中,已知 ,那么 的值为()
A.-30B.15 C.-60D.-15
9.设 、为两个不同的平面,l、m为两条不同的直线,且l,m,有如下的两个命题:①若 ‖ ,则l‖m;②若l⊥m,则 ⊥ .那么()
A.①是真命题,②是假命题B.①是假命题,②是真命题
C.①②都是真命题D.①②都是假命题
10.已知一个几何体的三视图如所示,则该几何体的体积为()
A.6 B.5.5
C.5 D.4.5
第Ⅱ卷非选择题(共100分)
二、填空题:本大题共7小题,考生作答5小题,每小题5分,满分25分.
(一)必做题(11~14题)
11.已知 ,且 是第二象限的角,
则___________.
12.执行右边的程序框图,若 =12, 则输
出的 = ;
13.函数 若
则 的值为:;
14.圆 上的点到直线 的最大距离与最小距离之差是: _____________.
(二)选做题(15~17题,考生只能从中选做一题)
15.(选修4—4坐标系与参数方程)曲线 与曲线 的位置关系是: (填“相交”、 “相切”或“相离”) ;
16.(选修4—5 不等式选讲)不等式 的解集是: ;
17.(选修4—1 几何证明选讲)已知 是圆 的切线,切点为 , . 是圆 的直径, 与圆 交于点 , ,则圆 的半径.
三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分)
18.(本小题12分)
已知向量 , ,设 .
(1).求 的值;
(2).当 时,求函数 的值域。
一、 选择题(每小题5分,共60分)
(1)已知集合M={x|-3 (A) {x|-5<x<5} (B) {x|-3<x<5} (C) {x|-5<x≤5} (D) {x|-3<x≤5} 【解析】直接利用交集性质求解,或者画出数轴求解. 【答案】B (2)已知复数 ,那么 = (A)(B) (C) (D) 【解析】 = 【答案】D (3)平面向量a与b的夹角为 , ,则 (A)(B)(C) 4(D)12 【解析】由已知|a|=2,|a+2b|2=a2+4a•b+4b2=4+4×2×1×cos60°+4=12 ∴ 【答案】B (4)已知圆C与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为 (A) (B) (C)(D) 【解析】圆心在x+y=0上,排除C、D,再结合图象,或者验证A、B中圆心到两直线的距离等于半径2即可. 【答案】B (5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 (A)70种 (B) 80种(C) 100种 (D)140种 【解析】直接法:一男两女,有C51C42=5×6=30种,两男一女,有C52C41=10×4=40种,共计70种 间接法:任意选取C93=84种,其中都是男医生有C53=10种,都是女医生有C41=4种,于是符合条件的有84-10-4=70种. 【答案】A (6)设等比数列{}的前n 项和为 ,若 =3 ,则= (A) 2 (B)(C) (D)3 【解析】设公比为q ,则 =1+q3=3q3=2 于是 【答案】B (7)曲线y=在点(1,-1)处的切线方程为 (A)y=x-2(B) y=-3x+2 (C)y=2x-3(D)y=-2x+1 【解析】y’= ,当x=1时切线斜率为k=-2 【答案】D (8)已知函数 =Acos( )的图象如图所示, ,则 = (A) (B)(C)-(D) 【解析】由图象可得最小正周期为2π3 于是f(0)=f(2π3),注意到2π3与π2关于7π12对称 所以f(2π3)=-f(π2)= 【答案】B (9)已知偶函数 在区间 单调增加,则满足 < 的x 取值范围是 (A)( , )(B) 〔 , )(C)( , )(D) 〔 , ) 【解析】由于f(x)是偶函数,故f(x)=f(|x|) ∴得f(|2x-1|)<f( ),再根据f(x)的单调性 得|2x-1|< 解得 <x< 【答案】A (10)某店一个月的收入和支出总共记录了 N个数据 , ,。 以上就是高中文科数学23题的全部内容,23.(本小题14分)已知椭圆 两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足 =1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.(1)求P点坐标;(2)求直线AB的斜率;(3)求△PAB面积的最大值.文科数学参考答案与评分标准 一、内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。