高二数学知识点总结,高二数学重点归纳总结

  • 高中数学
  • 2025-02-17

高二数学知识点总结?(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。那么,高二数学知识点总结?一起来了解一下吧。

高二选择性必修一数学知识点总结

高中是人生中非常重要的时间段,也是学知识最重要的时间,高二数学知识点有哪些呢。以下是由我为大家整理的“高二数学知识点有哪些”,仅供参考,欢迎大家阅读。

高二数学知识点有哪些

一、集合、简易逻辑(14课时,8个)

1.集合;

2.子集;

3.补集;

4.交集;

5.并集;

6.逻辑连结词;

7.四种命题;

8.充要条件.

二、函数(30课时,12个)

1.映射;

2.函数;

3.函数的单调性;

4.反函数;

5.互为反函数的函数图象间的关系;

6.指数概念的扩充;

7.有理指数幂的运算;

8.指数函数;

9.对数;

10.对数的运算性质;

11.对数函数.

12.函数的应用举例.

三、数列(12课时,5个)

1.数列;

2.等差数列及其通项公式;

3.等差数列前n项和公式;

4.等比数列及其通顶公式;

5.等比数列前n项和公式.

四、三角函数(46课时17个)

1.角的概念的推广;

2.弧度制;

3.任意角的三角函数;

4,单位圆中的三角函数线;

5.同角三角函数的基本关系式;

6.正弦、余弦的诱导公式;

7.两角和与差的正弦、余弦、正切;

8.二倍角的正弦、余弦、正切;

9.正弦函数、余弦函数的图象和性质;

10.周期函数;

11.函数的奇偶性;

12.函数的图象;

13.正切函数的图象和性质;

14.已知三角函数值求角;

15.正弦定理;

16余弦定理;

17斜三角形解法举例.

五、平面向量(12课时,8个)

1.向量;

2.向量的加法与减法;

3.实数与向量的积;

4.平面向量的坐标表示;

5.线段的定比分点;

6.平面向量的数量积;

7.平面两点间的距离;

8.平移.

六、不等式(22课时,5个)

1.不等式;

2.不等式的基本性质;

3.不等式的证明;

4.不等式的解法;

5.含绝对值的不等式.

七、直线和圆的方程(22课时,12个)

1.直线的倾斜角和斜率;

2.直线方程的点斜式和两点式;

3.直线方程的一般式;

4.两条直线平行与垂直的条件;

5.两条直线的交角;

6.点到直线的距离;

7.用二元一次不等式表示平面区域;

8.简单线性规划问题;

9.曲线与方程的概念;

10.由已知条件列出曲线方程;

11.圆的标准方程和一般方程;

12.圆的参数方程.

八、圆锥曲线(18课时,7个)

1椭圆及其标准方程;

2.椭圆的简单几何性质;

3.椭圆的参数方程;

4.双曲线及其标准方程;

5.双曲线的简单几何性质;

6.抛物线及其标准方程;

7.抛物线的简单几何性质.

拓展阅读:提升数学成绩的方法

错题分析法

对于数学,多做题是取得数学高分的保证。

高二上学期知识点

一、集合、简易逻辑(14课时)

学习集合、子集、补集、交集、并集、逻辑连结词、四种命题与充要条件,明确概念,理解逻辑关系。

二、函数(30课时)

深入理解映射与函数、函数单调性、反函数与互为反函数的图象关系、指数与对数概念及其运算性质,掌握函数应用。

三、数列(12课时)

研究数列、等差与等比数列及其公式,掌握数列求和与性质。

四、三角函数(46课时)

掌握角的概念、弧度制、三角函数定义与性质、诱导公式、和差倍角公式、三角函数图象与性质,理解三角函数应用。

五、平面向量(12课时)

学习向量、坐标表示、数量积与平移,理解向量在几何中的应用。

六、不等式(22课时)

掌握不等式的基本性质、证明与解法,熟悉含绝对值不等式的处理。

七、直线和圆的方程(22课时)

学习直线与圆的方程,掌握其几何性质与应用。

八、圆锥曲线(18课时)

研究椭圆、双曲线、抛物线的性质与方程,理解圆锥曲线几何特征。

九、直线、平面、简单几何体(36课时)

探讨直线、平面与几何体的基本性质与关系,掌握几何体的构造与分析。

十、排列、组合、二项式定理(18课时)

掌握分类计数、排列与组合原理,理解二项式定理与展开式性质。

十一、概率(12课时)

理解概率基本概念,学习等可能事件与独立事件的概率计算。

高三数学必背100个公式

1.高二数学重点知识点总结

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形.

(3)求圆方程的方法:

一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.

3、高中数学必修二知识点总结:直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆.

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

5、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.

应用:判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a.

2.高二数学重点知识点总结

一、随机事件

主要掌握好(三四五)

(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

高二数学试卷真题及答案

【 #高二#导语】高二变化的大背景,便是文理分科(或七选三)。在对各个学科都有了初步了解后,学生们需要对自己未来的发展科目有所选择、有所侧重。这可谓是学生们第一次完全自己把握、风险未知的主动选择。 无 高二频道为你整理了《高二下学期数学知识点整理》,助你金榜题名!

1.高二下学期数学知识点整理

⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

2.高二下学期数学知识点整理

1.两角和与差的正弦、余弦和正切公式:

重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。

高二数学学考重点知识归纳

高二时期的学习目标主要体现在班级或年级里你应该达到或者超过什么水平,以及你在高中毕业时将要达到什么水平,学到什么知识和技能,考上什么类型的大学等。以下是我给大家整理的高二数学必修一到五知识点总结,希望大家能够喜欢!

高二数学必修一到五知识点总结1

1、圆的定义:

平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有

(2)过圆外一点的切线:

①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:

通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

以上就是高二数学知识点总结的全部内容,高二数学必修一到五知识点总结1 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程 (1)标准方程,圆心,半径为r;(2)一般方程 当时,方程表示圆,此时圆心为,半径为 当时,表示一个点;当时,方程不表示任何图形。内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。

猜你喜欢