高中数学圆锥曲线解题思路,高二数学圆锥曲线大题

  • 高中数学
  • 2024-07-14

高中数学圆锥曲线解题思路?1、牢记核心知识 核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。2、计算能力与速度 计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。那么,高中数学圆锥曲线解题思路?一起来了解一下吧。

高中数学圆锥曲线超级难题

定义法。根据题意得到的式子是否满足某种曲线的定义,如|PF1丨+丨PF2丨=2a(大于丨F1F2丨),则P的轨迹是椭圆等。

待定系数法

知道某个曲线是双曲线,椭圆,抛物线等,设出其方程,求出系数。

高中数学圆锥曲线题型及归纳

解答数学圆锥曲线试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整。下面我给你分享高中数学圆锥曲线解题技巧,欢迎阅读。

高中数学圆锥曲线解题技巧

1.充分利用几何图形的策略

解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,往往能减少计算量。

例:设直线3x+4y+m=0与圆x+y+x-2y=0相交于P、Q两点,O为坐标原点,若OP⊥OQ,求m的值。

2.充分利用韦达定理的策略

我们经常设出弦的端点坐标但不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。

例:已知中心在原点O,焦点在y轴上的椭圆与直线y=x+1相交于P、Q两点,且OP⊥OQ,|PQ|=,求此椭圆方程。

3.充分利用曲线方程的策略

例:求经过两已知圆C:x+y-4x+2y=0和C:x+y-2y-4=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程。

4.充分利用椭圆的参数方程的策略

椭圆的参数方程涉及正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题。

圆锥曲线解题方法

1、数列问题

(1)熟练掌握等差、等比数列的性质、通项公式和求和公式;

(2)深刻理解课本上等差和等比数列求和公式是怎么推导出来的,其中蕴含的如“倒序相加”等解题思想是解题中经常用到的;

(3)熟练掌握将分母代数式连乘的分数转化成单项分式差,实现“消去中间,剩下两头”的题型;

(4)熟练掌握从现有数列(如{An})中抽取满足某个条件的若干项,组成一个新数列(如{Ank}),然后求新数列的通项和前多少项和的题型;

(5)熟练掌握通过化简或待定系数法,将不规则数列“凑”成等差或等比数列来解题的题型;

(6)熟练掌握数学归纳法的原理并应用它解决个别“先猜测再证明”的探究类题型。

(7)熟练掌握数列求极限的题型,尤其是通过化简让分母的指数比分子的指数高,以便n无穷大的时候分式等于0

2、圆锥曲线问题

(1)熟练掌握圆锥曲线的几何定义和准线定义,深刻理解“数形结合”的思想,这是解析几何的灵魂和精髓:用代数思想研究几何问题,实现定量求解;

(2)熟练运用圆锥曲线(椭圆、双曲线和抛物线)的普通方程求解线段、点到线的距离和两条线的夹角等问题;

(3)熟练运用圆锥曲线的参数方程辅助解题,尤其是椭圆和双曲线的参数方程跟三角函数结合非常紧密,而且三角函数的有界性又跟不等式求最大最小值关系密切。

高二数学圆锥曲线大题

切片法(先二后一):这里你要注意一下,圆锥的横截面和半圆的横截面的变化是不同的,需要分开两部分来做。

投影法(先一后二):

球面坐标法:

投影法和球坐标法的方程都是一笔过的,它们的变化范围都一致。

高中数学圆锥曲线解题技巧

高中数学圆锥曲线解题技巧如下:

大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。

一设:设直线与圆锥曲线 的两个交点,坐标分别为(x 1 ,y 1 ),(x 2 ,y 2),直线方程为y=kx+b。二联立:通过快速计算或者口算得到联立的二次方程。三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。

走完三部曲之后,在看题目给出了什么条件,要求什么。例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的 斜率、弦的中点坐标联系起来,相互转化.总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。

题型总结

圆锥曲线中常见题型总结

1、直线与圆锥曲线位置关系:这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.

若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。

2、圆锥曲线与向量结合问题:这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。

以上就是高中数学圆锥曲线解题思路的全部内容,5、距离转化法 圆锥曲线题型最主要的就是要能够理解图形和想象到平面图形的位置关系以及方程中系数对于图像的约束,距离转化法就是桥面运用了数形结合的原理快速解题的一种技巧。

猜你喜欢