高中函数的种类?那么,高中函数的种类?一起来了解一下吧。
还有分式函数、复合函数、反函数。
ax+c/dx+e这个是一次的分式函数,也就是分子和分母都是变量的一次式。解这样的题要先分离常数然后用反比例函数的图像求其最大值与最小值。
一次函数(1)当k>0时,y随x的增大而增大;
(2)当k<0时,y随x的增大而减小.
正比例函数与x、y轴交点是原点(0,0)。
(1)当k>0时,y随x的增大而增大,且直线经过第一、三象限;
(2)当k<0时,y随x的增大而减小,且直线经过第二、四象限
反比例函数 与坐标轴没有交点,但与坐标轴无限靠近。
(1)当k>0时,双曲线经过第一、三象限,在每个象限内,y随x的增大而减小;
(2) 当k<0时,双曲线经过第二、四象限,在每个象限内,y随x的增大而增大。
二次函数与x轴交点或,其中是方程的解,与y轴交点,顶点坐标是 (-,)。
(1)当a>0时,抛物线开口向上,并向上无限延伸;对称轴是直线x=-, y最小值=。
(2)当 a<0时,抛物线开口向下,并向下无限延伸;对称轴是直线x=-, y最大值=
注意事项总结:
1.关于点的坐标的求法:
方法有两种,一种是直接利用定义,结合几何直观图形,先求出有关垂线段的长,再根据该点的位置,明确其纵、横坐标的符号,并注意线段与坐标的转化,线段转换为坐标看象限加符号,坐标转换为线段加绝对值;另一种是根据该点纵、横坐标满足的条件确定,例如直线y=2x和y=-x-3的交点坐标,只需解方程组就可以了。
2.对解析式中常数的认识:
一次函数y=kx+b (k≠0)、二次函数y=ax2+bx+c(a≠0)及其它形式、反比例函数y=(k≠0),不同常数对图像位置的影响各不相同,它们所起的作用,一般是按其正、零、负三种情况来考虑的,一定要建立起图像位置和常数的对应关系。
3.对于二次函数解析式,除了掌握一般式即:y=ax2+bx+c((a≠0)之外,还应掌握“顶点式”y=a(x-h)2+ k及“两根式”y=a(x-x1)(x-x2),(其中x1,x2即为图象与x轴两个交点的横坐标)。当已知图象过任意三点时,可设“一般式”求解;当已知顶点坐标,又过另一点,可设“顶点式”求解;已知抛物线与x轴交点坐标时,可设“两根式”求解。总之,在确定二次函数解析式时,要认真审题,分析条件,恰当选择方法,以便运算简便。
4.二次函数y=ax2与y=a(x-h)2+k的关系:图象开口方向相同,大小、形状相同,只是位置不同。y=a(x-h)2+k图象可通过y=ax2平行移动得到。当h>0时,向右平行移动|h|个单位;h<0向左平行移动|h|个单位;k>0向上移动|k|个单位;k<0向下移动|k|个单位;也可以看顶点的坐标的移动, 顶点从(0,0)移到(h,k),由此容易确定平移的方向和单位。
初等函数:
1、代数函数:有理函数--有理整函数、有理分函数;无理函数。
2、超越函数:
指数函数
对数函数
三角函数
反三角函数
双曲函数:双曲正弦(shx)、双曲余弦、双曲正切、双曲余切
反双曲函数:也有四个
具体定义、符号可以自行列表整理。
太多了等比等差,二次函数一次函数反比例函数有关排列与组合求值域累加思想1、函数与方程思想。函数与方程是高中数学的重要组成部分,是高中代数的主线,它体系完整、内容丰富、应用广泛。在历年高考试题中,对函数与方程及其思想、方法的考查,遍布于代数、三角、几何以及各类题型(选择题、填空题、解答题)的题目之中。函数与方程的实质是揭示了客观世界中量的相互依存又互有制约的关系,因而函数与方程思想的教学,既有着不可替代的重要位置,又有着重要的现实意义。函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。2、分类讨论思想。在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。引起分类讨论的原因主要是以下几个方面:①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a2时分a>0、a=0和a<0三种情况讨论。这称为含参型。另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。3、数形结合思想。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。4、转化与化归思想。转化与化归是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,转化与化归思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。著名的数学家,莫斯科大学教授c.a.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。由几种思想出发可以有很多方法比如:构造法,换元法,正难则反(即补集思想),等价代换,特殊值法等。
数学中的函数分为两种,一种是基本函数,一种是复合函数。基本函数共有五种:指数函数、对数函数、幂函数、三角函数和反三角函数;复合函数是由基本函数复合而成的。例如:y=a^x是指数函数,y=sin(x)是三角函数,而y=sin(a^x)是组合函数。另外还有一种特殊函数,如:y=x^x。
以上就是高中函数的种类的全部内容,数。