高中的导数公式?..那么,高中的导数公式?一起来了解一下吧。
在湘教版高中数学2-2就有了,基本初等函数导数公式主要有以下
y=f(x)=c (c为常数),则f'(x)=0
f(x)=x^n(n不等于0) f'(x)=nx^(n-1)(x^n表示x的n次方)
f(x)=sinxf'(x)=cosx
f(x)=cosxf'(x)=-sinx
f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x f'(x)=e^x
f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)
f(x)=lnx f'(x)=1/x (x>0)
f(x)=tanxf'(x)=1/cos^2 x
f(x)=cotxf'(x)=- 1/sin^2 x
导数运算法则如下
(f(x)+/-g(x))'=f'(x)+/- g'(x)
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2
求导公式 c'=0(c为常数) (x^a)'=ax^(a-1),a为常数且a≠0 (a^x)'=a^xlna (e^x)'=e^x (logax)'=1/(xlna),a>0且 a≠1 (lnx)'=1/x (sinx)'=cosx (cosx)'=-sinx (tanx)'=(secx)^2 (secx)'=secxtanx (cotx)'=-(cscx)^2 (cscx)'=-csxcotx (arcsinx)'=1/√(1-x^2) (arccosx)'=-1/√(1-x^2) (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (shx)'=chx (chx)'=shx (uv)'=uv'+u'v (u+v)'=u'+v' (u/)'=(u'v-uv')/^2 呵呵~!很有用的。
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
所有的导数常用公式,希望对楼主有帮助
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
a是一个常数,对数的真数,比如ln5 5就是真数
log对数lognm 这里的n是指底数,m是指真数,当底数为10时,简写成lgm 当底数为e(e = 2.718281828459
是一个常数 数学中成为超越数 经常要用到)时,简写成lnm (如上面给你举的那个例子ln5)
sin,cos,tan,sec,cot,csc分别为三角函数 分别表示正弦、余弦、正切、正割、余切、余割。正弦余弦是一对正切余切是一对 正割余割是一对 这六个是最基本的三角函数
arc是指的反三角函数 比如反正弦Sin30°=0.5
则arcsin0.5=30°(角度制)=π/6(弧度制)
反正切反余弦反余切等等都是同一道理
几种常见函数的导数: 1.c′=0 (c为常数) 2.(x∧n)′=nx∧(n-1) 3.(sinx)′=cosx 4.(cosx)′=-sinx 5.(lnx)′=1/x 6.(e∧x)′=e∧x 7.(logax)'=1/(xlna) 8.(a∧x)'=(a∧x)*lna 函数的和·差·积·商的导数: (u±v)′=u′±v′ (uv)′=u′v+uv′ (u/v)′=(u′v-uv′)/v² 复合函数的导数: (f(g(x))′=(f(u))′(g(x))′. u=g(x)
以上就是高中的导数公式的全部内容。