高中高三数学公式总结?4、两角和公式:sin(A+B)=sinAcosB+cosAsinB,cos(A+B)=cosAcosB-sinAsinB。5、两角差公式:sin(A-B)=sinAcosB-cosAsinB,cos(A-B)=cosAcosB+sinAsinB。6、三角函数平方和公式:sin2A=2sinAcosA,cos2A=(cosA)^2-(sinA)^2=2*(cosA)^2-1=1-2*(sinA)^2。7、那么,高中高三数学公式总结?一起来了解一下吧。
高中的数学有很多需要我们熟记的公式,这些数学中的公式可以帮助我们在高考数学的答题中更加简单容易,下面我为大家整理了一些重点数学公式。
高中数学公式大全
1、函数的单调性
(1)设x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函数;
f(x1)f(x2)0f(x)在[a,b]上是减函数.
(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
高中数学如何学习?史上最强高考励志书《高考蝶变》教你怎样提高成绩,淘宝搜索《高考蝶变》购买。
4、两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
5、倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
6、抛物线
1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。
数学公式高中介绍如下:
一、数列定律公式:
1、等差数列中:S奇=na中,例如S13=13a7。
2、等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差。
3、等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立。
4、等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q。
二、常用数列公式:bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2。
三、抛物线公式:k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo。注:(xo,yo)均为直线过圆锥曲线所截段的中点。
四、绝对值不等式公式:∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣。
五、向量a在向量b上的射影公式:〔向量a×向量b的数量积〕/[向量b的模]。
(1)微积分的基本公式共有四大公式:
1.牛顿-莱布尼茨公式,又称为微积分基本公式
2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分
3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分
4.斯托克斯公式,与旋度有关
(2)微积分常用公式:
Dx sin x=cos x
cos x = -sin x
tan x = sec2 x
cot x = -csc2 x
sec x = sec x tan x
csc x = -csc x cot x
sin x dx = -cos x + C
cos x dx = sin x + C
tan x dx = ln |sec x | + C
cot x dx = ln |sin x | + C
sec x dx = ln |sec x + tan x | + C
csc x dx = ln |csc x - cot x | + C
sin-1(-x) = -sin-1 x
cos-1(-x) = - cos-1 x
tan-1(-x) = -tan-1 x
cot-1(-x) = - cot-1 x
sec-1(-x) = - sec-1 x
csc-1(-x) = - csc-1 x
Dx sin-1 ()=
cos-1 ()=
tan-1 ()=
cot-1 ()=
sec-1 ()=
csc-1 (x/a)=
sin-1 x dx = x sin-1 x++C
cos-1 x dx = x cos-1 x-+C
tan-1 x dx = x tan-1 x- ln (1+x2)+C
cot-1 x dx = x cot-1 x+ ln (1+x2)+C
sec-1 x dx = x sec-1 x- ln |x+|+C
csc-1 x dx = x csc-1 x+ ln |x+|+C
sinh-1 ()= ln (x+) xR
cosh-1 ()=ln (x+) x≥1
tanh-1 ()=ln () |x| 1
sech-1()=ln(+)0≤x≤1
csch-1 ()=ln(+) |x| >0
Dx sinh x = cosh x
cosh x = sinh x
tanh x = sech2 x
coth x = -csch2 x
sech x = -sech x tanh x
csch x = -csch x coth x
sinh x dx = cosh x + C
cosh x dx = sinh x + C
tanh x dx = ln | cosh x |+ C
coth x dx = ln | sinh x | + C
sech x dx = -2tan-1 (e-x) + C
csch x dx = 2 ln || + C
duv = udv + vdu
duv = uv = udv + vdu
→ udv = uv - vdu
cos2θ-sin2θ=cos2θ
cos2θ+ sin2θ=1
cosh2θ-sinh2θ=1
cosh2θ+sinh2θ=cosh2θ
Dx sinh-1()=
cosh-1()=
tanh-1()=
coth-1()=
sech-1()=
csch-1(x/a)=
sinh-1 x dx = x sinh-1 x-+ C
cosh-1 x dx = x cosh-1 x-+ C
tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C
coth-1 x dx = x coth-1 x- ln | 1-x2|+ C
sech-1 x dx = x sech-1 x- sin-1 x + C
csch-1 x dx = x csch-1 x+ sinh-1 x + C
sin 3θ=3sinθ-4sin3θ
cos3θ=4cos3θ-3cosθ
→sin3θ= (3sinθ-sin3θ)
→cos3θ= (3cosθ+cos3θ)
sin x = cos x =
sinh x = cosh x =
正弦定理:= ==2R
余弦定理:a2=b2+c2-2bc cosα
b2=a2+c2-2ac cosβ
c2=a2+b2-2ab cosγ
sin (α±β)=sin α cos β ± cos α sin β
cos (α±β)=cos α cos β sin α sin β
2 sin α cos β = sin (α+β) + sin (α-β)
2 cos α sin β = sin (α+β) - sin (α-β)
2 cos α cos β = cos (α-β) + cos (α+β)
2 sin α sin β = cos (α-β) - cos (α+β)
sin α + sin β = 2 sin (α+β) cos (α-β)
sin α - sin β = 2 cos (α+β) sin (α-β)
cos α + cos β = 2 cos (α+β) cos (α-β)
cos α - cos β = -2 sin (α+β) sin (α-β)
tan (α±β)=,cot (α±β)=
ex=1+x+++…++ …
sin x = x-+-+…++ …
cos x = 1-+-+++
ln (1+x) = x-+-+++
tan-1 x = x-+-+++
(1+x)r =1+rx+x2+x3+ -1= n
= n (n+1)
= n (n+1)(2n+1)
= [ n (n+1)]2
Γ(x) = x-1e-t dt = 22x-1dt = x-1 dt
β(m,n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx
高中数学所有公式如下:
1、正弦定理:a/sinA=b/sinB=c/sinC=2R,其中R为三角形外接圆的半径。
2、余弦定理:a2=b2+c2-2bc*cosA。
3、正切定理:tan(A+B)=(tanA+tanB)/(1-tanAtanB)。
4、两角和公式:sin(A+B)=sinAcosB+cosAsinB,cos(A+B)=cosAcosB-sinAsinB。
5、两角差公式:sin(A-B)=sinAcosB-cosAsinB,cos(A-B)=cosAcosB+sinAsinB。
6、三角函数平方和公式:sin2A=2sinAcosA,cos2A=(cosA)^2-(sinA)^2=2*(cosA)^2-1=1-2*(sinA)^2。
7、诱导公式:sin(2kπ+α)=sinα(k∈Z),cos(2kπ+α)=cosα(k∈Z)。
8、倍角公式:sin(2A)=2sinAcosA,cos(2A)=(cosA)^2-(sinA)^2。
9、半角公式:sin((A/2))=√((1-cosA)/2)。
10、和差化积:sinθ+sinφ=2sincos【(θ-φ)/2】。
高中数学常用公式:
一、代数公式
1. 二次公式:ax² + bx + c = 0 的解为 x = [-b ± √] / 。
2. 乘法公式:
-= a² - b²。
- ² = a² + 2ab + b²。
- ² = a² - 2ab + b²。
二、三角函数公式
三角函数的和差公式、倍角公式以及诱导公式。如:sin = sinacosb + cosasinb,cos = cosacosb - sinasinb等。
三、几何公式
1. 圆的周长和面积公式:C = 2πr,S = πr²。
2. 三角形面积公式:S =× base × height。
3. 矩形、正方形面积公式:S = a × b。
四、数列与不等式公式
等差数列和等比数列的通项公式及求和公式,以及不等式的性质与解法。如等差数列的通项公式 an = a1 + d。不等式的解法包括比较法、综合法等。数列极限的夹逼准则等。
以上就是高中高三数学公式总结的全部内容,数学公式高中介绍如下:一、数列定律公式:1、等差数列中:S奇=na中,例如S13=13a7。2、等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差。3、等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立。4、。