高中数学必修三总结,高中必修三数学知识点总结

  • 高中数学
  • 2024-06-28

高中数学必修三总结?3、算数的三种基本逻辑结构:(1)顺序结构(2)条件结构(3)循环结构 4、基本算法语句:(1)输入、输出语句(2)赋值语句(3)条件语句(4)循环语句 5、算法案例:(1)辗转相除法与更相减损术(2)秦九韶算法(3)进位制 第二章 统计 1、那么,高中数学必修三总结?一起来了解一下吧。

高中数学有必修三吗?

数学必修3知识点:

①集合

②函数

③基本初等函数

④立体几何初步

⑤解析几何初步

⑥统计

⑦概率

⑧算法

⑨平面向量

10三角函数

11微积分

高中必修三数学知识点总结

数学是重要的基础科学,是通向科学大门的金钥匙。我整理了相关的内容,欢迎欣赏与借鉴。

对数的性质及推导

用^表示乘方,用log(a)(b)表示以a为底,b的.对数

*表示乘号,/表示除号

定义式:

若a^n=b(a>0且a≠1)

则n=log(a)(b)

基本性质:

1.a^(log(a)(b))=b

2.log(a)(MN)=log(a)(M) log(a)(N);

3.log(a)(M/N)=log(a)(M)-log(a)(N);

4.log(a)(M^n)=nlog(a)(M)

推导

1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)

2.

MN=M*N

由基本性质1(换掉M和N)

a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)]

由指数的性质

a^[log(a)(MN)] = a^{[log(a)(M)] [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(MN) = log(a)(M) log(a)(N)

3.与2类似处理

MN=M/N

由基本性质1(换掉M和N)

a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)]

由指数的性质

a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(M/N) = log(a)(M) - log(a)(N)

4.与2类似处理

M^n=M^n

由基本性质1(换掉M)

a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

由指数的性质

a^[log(a)(M^n)] = a^{[log(a)(M)]*n}

又因为指数函数是单调函数,所以

log(a)(M^n)=nlog(a)(M)

其他性质:

性质一:换底公式

log(a)(N)=log(b)(N) / log(b)(a)

推导如下

N = a^[log(a)(N)]

a = b^[log(b)(a)]

综合两式可得

N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

又因为N=b^[log(b)(N)]

所以

b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

所以

log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}

所以log(a)(N)=log(b)(N) / log(b)(a)

性质二:

log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下

由换底公式[lnx是log(e)(x),e称作自然对数的底]

log(a^n)(b^m)=ln(a^n) / ln(b^n)

由基本性质4可得

log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]}

再由换底公式

log(a^n)(b^m)=m/n*[log(a)(b)]

公式三:

log(a)(b)=1/log(b)(a)

证明如下:

由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1

=1/log(b)(a)

还可变形得:

log(a)(b)*log(b)(a)=1

三角函数的和差化积公式

sinα+sinβ=2sin(α+β)/2·cos(α-β)/2

sinα-sinβ=2cos(α+β)/2·sin(α-β)/2

cosα+cosβ=2cos(α+β)/2·cos(α-β)/2

cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2

三角函数的积化和差公式

sinα ·cosβ=1/2 [sin(α+β)+sin(α-β)]

cosα ·sinβ=1/2 [sin(α+β)-sin(α-β)]

cosα ·cosβ=1/2 [cos(α+β)+cos(α-β)]

sinα ·sinβ=-1/2 [cos(α+β)-cos(α-β)]

高中数学必修三重难点

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第

三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它

的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的

一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应

线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

高中数学必修三教案

第一章

算法初步

1、算法

2、程序框图

3、算数的三种基本逻辑结构:(1)顺序结构(2)条件结构(3)循环结构

4、基本算法语句:(1)输入、输出语句(2)赋值语句(3)条件语句(4)循环语句

5、算法案例:(1)辗转相除法与更相减损术(2)秦九韶算法(3)进位制

第二章

统计

1、收集数据(抽样方法):(1)简单随机抽样(2)系统抽样(3)分层抽样

2、整理、分析、数据、估计、推断:(1)用样本估计总体:①用样本频率估计总体分布②用样本数据特征估计总体数据特征(2)变量间的相关关系:线性回归分析

第三章

概率

随机事件

——

概率

——

概率的意义与性质:1、古典概型2、几何概型

2、应用概率解决实际问题

——

随机数与随机模型

——

高三数学考试技巧指导

一个人的知识面是一个圆圈,知识储备越多,圆圈越大,接触到的面积便越广阔,便能掌握和窥视更多的机会。下面是由我为大家整理的高中数学必修三知识点,仅供参考,欢迎大家阅读。

高中数学必修三知识点1

算法初步

1:算法的概念

(1)算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.

(2)算法的特点:

图片有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.

图片确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

图片顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.

图片不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.

图片普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.

2: 程序框图

(1)程序框图基本概念:

图片程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

以上就是高中数学必修三总结的全部内容,1、抽样方法 ⑴简单随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。注:①每个个体被抽到的概率为 ;②常用的简单随机抽样方法有:抽签法;随机数法。⑵系统抽样:当总体个数较多时。

猜你喜欢