高中二次函数知识点?二次函数的知识点:1、二次函数的定义:y=ax^2+bx+c(a≠0)。2、图像和性质:二次函数y=ax^2(a>0)的图像和性质。二次函数y=ax^2(a<0)的图像和性质。二次函数y=ax^2+bx+c(a>0)的图像和性质。二次函数y=ax^2+bx+c(a<0)的图像和性质。求解二次函数,那么,高中二次函数知识点?一起来了解一下吧。
二次函数的知识点:
1、二次函数的定义:y=ax^2+bx+c(a≠0)。
2、图像和性质:
二次函数y=ax^2(a>0)的图像和性质。
二次函数y=ax^2(a<0)的图像和性质。
二次函数y=ax^2+bx+c(a>0)的图像和性质。
二次函数y=ax^2+bx+c(a<0)的图像和性质。
一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a。
当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号。
可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a。
【知识梳理】
1.定义:一般地,如果是常数,,那么叫做的二次函数.
2.二次函数用配方法可化成:的形式,其中.
3.抛物线的三要素:开口方向、对称轴、顶点.
①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;
相等,抛物线的开口大小、形状相同.
②平行于轴(或重合)的直线记作.特别地,轴记作直线.
4.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.
5.求抛物线的顶点、对称轴的方法
(1)公式法:,∴顶点是,对称轴是直线.
(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.
6.抛物线中,的作用
(1)决定开口方向及开口大小,这与中的完全一样.
(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.
(3)的大小决定抛物线与轴交点的位置.
当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .
7.用待定系数法求二次函数的解析式
(1)一般式:.已知图像上三点或三对、的值,通常选择一般式.(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.
(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.
12.直线与抛物线的交点
(1)轴与抛物线得交点为(0, ).
(2)与轴平行的直线与抛物线有且只有一个交点(,).
(3)抛物线与轴的交点
二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:
①有两个交点抛物线与轴相交;
②有一个交点(顶点在轴上)抛物线与轴相切;
③没有交点抛物线与轴相离.
(4)平行于轴的直线与抛物线的交点
同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.
(5)一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:①方程组有两组不同的解时与有两个交点; ②方程组只有一组解时与只有一个交点;③方程组无解时与没有交点.
(6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故
二次函数的知识点
1、二次函数的解析式:(1)一般式: y=ax2+bx+c(a≠0),
(2)顶点式:y=a(x+m)2+k(a≠0),此时二次函数的顶点坐标为(-m,k)
(3)分解式:y=a(x-x1)(x-x2)其中x1、x2是二次函数与x轴的两个交点的横坐标,此时二次函数的对称轴为直线x= ;
2、二次函数的图象与性质:
(1) 开口方向:当a>0时,函数开口方向向上;当a<0时,函数开口方向向下;
(2) 对称轴:直线x=-b/2a;
(3) 顶点坐标:( , );
(4) 增减性:当a>0时,在对称轴左侧,y随着x的增大而减少;在对称轴右侧,y随着x的增大而增大;当a<0时,在对称轴左侧,y随着x的增大而增大;在对称轴右侧,y随着x的增大而减少;
(5) 最大或最小值:当a>0时,函数有最小值,并且当x= ,y最小值= ;当a<0时,函数有最大值,并且当x= ,y最大值= ;
(6) 与X轴的交点个数:当Δ=b2-4ac>0时,函数与X轴有两个不同的交点;Δ=b2-4ac <0时,函数与X轴没有交点;Δ=b2-4ac =0时;函数与X轴只有一个交点;
(7) 函数值的正、负性:如图1:当x<x1或x>x2时,y > 0;
当x1<x<x2时,y<0;
如图2:当x1<x<x2时,y>0;
当x<x1或x>x2时,y < 0;
(8) 二次函数y=ax2+bx+c(a≠0)与x轴的交点坐标为A(x1,0),B(x2,0) ,则二次函数与X轴的交点之间的距离AB= =
(9) 二次函数y=ax2+bx+c(a≠0) 中a、b、c的符号判别:(1)a的符号判别由开口方向确定:当开口向上时,a>0;当开口向下时,a<0;(2)c的符号判别由与Y轴的交点来确定:若交点在X轴的上方,则c>0;若交点在X轴的下方,则C<0;(3)b的符号由对称轴来确定:对称轴在Y轴的左侧,则a、b同号;若对称轴在Y 轴的右侧,则a、b异号;
(10) (1)二次函数y=ax2+bx+c(a≠0)与X轴只有一个交点或二次函数的顶点在X轴上,则Δ=b2-4ac=0;
(2)二次函数y=ax2+bx+c(a≠0)的顶点在Y轴上或二次函数的图象关于Y轴对称,则b=0;
(3)二次函数y=ax2+bx+c(a≠0)经过原点,则c=0;
3、二次函数的解析式的求法:
(1) 已知关于x的二次函数图象的对称轴是直线x=1,图象交Y轴于点(0,2),且过点(-1,0)求这个二次函数的解析式;
(2) 已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式;
(3) 已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式;
(4) 已知抛物线与X轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式;
(5) 已知抛物线通过三点(1,0),(0,-2),(2,3)求此抛物线的解析式;
(6) 抛物线的顶点坐标是(6,-12),且与X轴的一个交点的横坐标是8,求此抛物线的解析式;
(7) 抛物线经过点(4,-3),且当x=3时,y最大值=4,求此抛物线的解析式;
二次函数(quadratic function)是形如y = ax^2 + bx + c的函数。
1. 标准形式:二次函数的标准形式是y = ax^2 + bx + c,其中a、b、c是实数,且a ≠ 0。a决定了二次函数的开口方向,a>0时开口朝上,a<0时开口朝下。
2. 平移变换:二次函数可以通过平移变换改变其图像位置。对于函数y = a(x-h)^2 + k,h决定了图像的左右平移,k决定了图像的上下平移。
3. 判别式和根的性质:二次函数的判别式Δ = b^2 - 4ac可以判断二次函数方程 ax^2 + bx + c = 0的根的情况。当Δ > 0时,方程有两个不相等的实根;当Δ = 0时,方程有一个重根;当Δ < 0时,方程无实根。
4. 顶点和轴对称性:二次函数的顶点坐标为(h, k),其中h = -b/(2a),k = f(h)。顶点是二次函数图像的最低或最高点,同时也是图像的轴对称轴。
5. 最值和范围:二次函数的最值(最大值或最小值)由a的正负决定。当a>0时,函数的最小值为k;当a<0时,函数的最大值为k。二次函数的范围(取值范围)是由最值决定的。
在数学中,二次函数的最高阶必须是二次的。在数学中,二次函数主要研究学生对公式的应用,是数学知识的重点。二次函数知识点总结有哪些?一起来看看二次函数知识点总结,欢迎查阅!
数学二次函数知识点归纳
计算方法
1.样本平均数:⑴ ;⑵若 , ,…, ,则 (a―常数, , ,…, 接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴ ;⑵若 , ,…, ,则 (a―接近 、 、…、 的平均数的较“整”的常数);若 、 、…、 较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:
三、 应用举例(略)
初三数学知识点:第四章 直线形
★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆ 内容提要☆
一、 直线、相交线、平行线
1.线段、射线、直线三者的区别与联系
从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
4.两点间的距离(三个距离:点-点;点-线;线-线)
5.角(平角、周角、直角、锐角、钝角)
6.互为余角、互为补角及表示方法
7.角的平分线及其表示
8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)
9.对顶角及性质
10.平行线及判定与性质(互逆)(二者的区别与联系)
11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
以上就是高中二次函数知识点的全部内容,二次函数的知识点:1、二次函数的定义:y=ax^2+bx+c(a≠0)。2、图像和性质:二次函数y=ax^2(a>0)的图像和性质。二次函数y=ax^2(a<0)的图像和性质。二次函数y=ax^2+bx+c(a>0)的图像和性质。二次函数y=ax^2+bx+c(a<0)的图像和性质。