不等式高中公式?2、绝对值不等式公式:||a|-|b||≤|a-b|≤|a|+|b| ||a|-|b||≤|a+b|≤|a|+|b| 3、柯西不等式:设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2)当且仅当ai=λbi(λ为常数,那么,不等式高中公式?一起来了解一下吧。
高中数学中常见的四个基本不等式分别是:
1. 两个正数的平均数大于等于它们的几何平均数:对于任意正数a和b,有(a+b)/2 ≥ √(ab)。
2. 两个正数的平方和大于等于它们的两倍乘积:对于任意正数a和b,有a^2 + b^2 ≥ 2ab。
3. 两个正数的立方和大于等于它们的三倍乘积:对于任意正数a和b,有a^3 + b^3 ≥ 3ab(a+b)。
4. 两个正数的n次幂和大于等于它们的n倍乘积:对于任意正数a和b,以及任意正整数n,有a^n + b^n ≥ nab^(n-1)。
这些不等式在解决各种数学问题、证明和优化中都有广泛应用。
1、基本不等式:
√(ab)≤(a+b)/2
那么可以变为a^2-2ab+b^2≥0
a^2+b^2≥2ab
ab≤a与b的平均数的平方
2、绝对值不等式公式:
||a|-|b||≤|a-b|≤|a|+|b|
||a|-|b||≤|a+b|≤|a|+|b|
3、柯西不等式:
设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2)当且仅当ai=λbi(λ为常数,i=1,2.3,…n)时取等号。
4、三角不等式
对于任意两个向量、,其加强的不等式
这个不等式也可称为向量的三角不等式。
5、四边形不等式
如果对于任意的a1≤a2
有m[a1,b1]+m[a2,b2]≤m[a1,b2]+m[a2,b1],
那么m[i,j]满足四边形不等式。
常用不等式公式:
①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。
②√(ab)≤(a+b)/2。
③a²+b²≥2ab。
④ab≤(a+b)²/4。
⑤||a|-|b| |≤|a+b|≤|a|+|b|。
原理:
①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x) ③如果不等式F(x) ④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。 高中阶段的不等式公式: 一、两个数的不等式公式 1、若a-b>0,则a>b(作差)。 2、若a>b,则a±c>b±c。 3、若a+b>c,则a>b-c(移项)。 4、若a>b,则c>d(不等号同向相加成立,两个大的加起来,肯定比两个小的加起来大)。 5、若a>b>0,c>d>0则ac>bd(两个大正数相乘肯定比两个小正数的相乘大)。 6、若a>b>0,则an>bn(n∈N,n>1)。 二、基本不等式(也叫均值不等式) 思想:反应的是算术平均值(a+b)/2和几何平均值的大小关系,这里a,b都是非负数。 1、(a+b)/2≥ab(算术平均值不小于几何平均值)。 2、a2+b2≥2ab(由1两边平方变化而来)。 3、ab≤(a2+b2)/2≤(a+b)2 /2(由2扩展而来)。 三、绝对值不等式公式(a,b看成向量,“||”看成向量的模也适用) 思想:三角形两边之差小于第三边,两边之和大于第三边。 1、||a|-|b| |≤|a-b|≤|a|+|b| 2、||a|-|b| |≤|a+b|≤|a|+|b| 四、二次函数不等式 f(x)=ax2+bx +c(a≠0) 思想:函数图像是开口向上(a>0)或开口向下(a<0)的曲线,令函数值为0,解出f(x)的零点,符号看函数值处在纵坐标的正半轴还是负半轴。 高中数学基本不等式公式如下: 数学不等式公式:用符号“>”“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。 通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。 一般地,用纯粹的大于号“>”、小于号“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。其中,两边的解析式的公共定义域称为不等式的定义域。 整式不等式:整式不等式两边都是整式(即未知数不在分母上)。一元一次不等式:含有一个未知数(即一元)、并且未知数的次数是1次(即一次)的不等式。如3-x>0。同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。 基本性质 ①如果x>y,那么y ②如果x>y,y>z;那么x>z;(传递性)。 ③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)。 以上就是不等式高中公式的全部内容,1、若f(x)/g(x)>0,则f(x)×g(x)>0;若f(x)/g(x)<0,则f(x)×g(x)<0,反过来也成立。2、若f(x)>0,g(x)>0,则g(x)+g(x)>0;若f(x)<0,g(x)<0,则g(x)+g(x)<0。七、与导数有关的不等式 1、若f(x)在区间(a,b)内单调增。高一基本不等式公式
高中数学不等式秒杀公式