高中数列的公式大全?1.等差数列:an=a1+(n-1)d=Sn-S(n-1)(n≥2)=kn+b Sn=n(a1+an)/2=na1+n(n-1)d/2 an=am+(n-m)d 2.等比数列:an=a1q^(n-1)=Sn-S(n-1)(n≥2)Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q) (q≠1) 或q=1,那么,高中数列的公式大全?一起来了解一下吧。
数学公式高中介绍如下:
一、数列定律公式:
1、等差数列中:S奇=na中,例如S13=13a7。
2、等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差。
3、等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立。
4、等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q。
二、常用数列公式:bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2。
三、抛物线公式:k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo。注:(xo,yo)均为直线过圆锥曲线所截段的中点。
四、绝对值不等式公式:∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣。
五、向量a在向量b上的射影公式:〔向量a×向量b的数量积〕/[向量b的模]。
1.等差数列:an=a1+(n-1)d=Sn-S(n-1)(n≥2)=kn+b
Sn=n(a1+an)/2=na1+n(n-1)d/2
an=am+(n-m)d
2.等比数列:an=a1q^(n-1)=Sn-S(n-1)(n≥2)
Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q) (q≠1) 或q=1,Sn=na1
an=amq^(n-m)
1.等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数
2.等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0) 3.等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an bn}、 、 仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
10、三个数成等比的设法:a/q,a,aq;
11、{an}为等差数列,则 (c>0)是等比数列。
基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d
an=ak+(n-k)d
(其中a1为首项、ak为已知的第k项)
当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn=
Sn=
Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
12、等比数列的通项公式:
an=
a1
qn-1
an=
ak
qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n
a1
(是关于n的正比例式);
当q≠1时,Sn=
Sn=
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m
-
S3m、……仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m
-
S3m、……仍为等比数列。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
1、等比数列通项公式、求和公式:
2、等差数列通项公式、求和公式:
扩展资料
等比数列性质:
(1)若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)若“G是a、b的等比中项”则“G^2=ab(G≠0)”。
(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。
等差数列性质:
(1)在等差数列中,S = a,S = b (n>m),则S = (a-b)。
(2)在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍。
以上就是高中数列的公式大全的全部内容,1.等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数 2.等比数列的通项公式: an= a1 qn-1 an= ak qn-k (其中a1为首项、ak为已知的第k项。