高中数列的公式大全,数列公式总结

  • 高中数学
  • 2024-11-10

高中数列的公式大全?1.等差数列:an=a1+(n-1)d=Sn-S(n-1)(n≥2)=kn+b Sn=n(a1+an)/2=na1+n(n-1)d/2 an=am+(n-m)d 2.等比数列:an=a1q^(n-1)=Sn-S(n-1)(n≥2)Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q) (q≠1) 或q=1,那么,高中数列的公式大全?一起来了解一下吧。

数列所有公式大全

数学公式高中介绍如下:

一、数列定律公式:

1、等差数列中:S奇=na中,例如S13=13a7。

2、等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差。

3、等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立。

4、等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q。

二、常用数列公式:bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2。

三、抛物线公式:k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo。注:(xo,yo)均为直线过圆锥曲线所截段的中点。

四、绝对值不等式公式:∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣。

五、向量a在向量b上的射影公式:〔向量a×向量b的数量积〕/[向量b的模]。

等差数列中基本五大公式

1.等差数列:an=a1+(n-1)d=Sn-S(n-1)(n≥2)=kn+b

Sn=n(a1+an)/2=na1+n(n-1)d/2

an=am+(n-m)d

2.等比数列:an=a1q^(n-1)=Sn-S(n-1)(n≥2)

Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q) (q≠1) 或q=1,Sn=na1

an=amq^(n-m)

高中椭圆公式大全

1.等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数

2.等比数列的通项公式: an= a1 qn-1 an= ak qn-k

(其中a1为首项、ak为已知的第k项,an≠0) 3.等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列

{an bn}、 、 仍为等比数列。

7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

10、三个数成等比的设法:a/q,a,aq;

11、{an}为等差数列,则 (c>0)是等比数列。

高中等差数列公式

基本公式:

9、一般数列的通项an与前n项和Sn的关系:an=

10、等差数列的通项公式:an=a1+(n-1)d

an=ak+(n-k)d

(其中a1为首项、ak为已知的第k项)

当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

11、等差数列的前n项和公式:Sn=

Sn=

Sn=

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

12、等比数列的通项公式:

an=

a1

qn-1

an=

ak

qn-k

(其中a1为首项、ak为已知的第k项,an≠0)

13、等比数列的前n项和公式:当q=1时,Sn=n

a1

(是关于n的正比例式);

当q≠1时,Sn=

Sn=

三、有关等差、等比数列的结论

14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m

-

S3m、……仍为等差数列。

15、等差数列{an}中,若m+n=p+q,则

16、等比数列{an}中,若m+n=p+q,则

17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m

-

S3m、……仍为等比数列。

18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

数列求和公式大全

1、等比数列通项公式、求和公式:

2、等差数列通项公式、求和公式:

扩展资料

等比数列性质:

(1)若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。

(2)在等比数列中,依次每k项之和仍成等比数列。

(3)若“G是a、b的等比中项”则“G^2=ab(G≠0)”。

(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。

等差数列性质:

(1)在等差数列中,S = a,S = b (n>m),则S = (a-b)。

(2)在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍。

以上就是高中数列的公式大全的全部内容,1.等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数 2.等比数列的通项公式: an= a1 qn-1 an= ak qn-k (其中a1为首项、ak为已知的第k项。

猜你喜欢