(3)f(x)在(-∞,2]上极大值为f(-2/3)=-149/27即这个区间内所有f(x)<=-149/27;
所以x0在(2,+∞)上,而这是单增区间;所以由f(α)>0可得α>xo;
接着考虑β。
β=α-f(α)/f'(α)
因为f(α)>0,f'(α)>0,所以β<α
然后由(2)中的结论令x=x0得
0>f(α)+f'(α)(x0-α)
-f(α)>f'(α)(x0-α)
-f(α)/f'(α)>x0-α
α-f(α)/f'(α)>x0
即β>x0

高中导数29个典型例题
难度是比平时的模考还要难,在很多的考生采访当中没有几个人说不难的,而且大多数的人都是没有算出答案,看来今年高考数学的难度是很大的。
高中数学导数大题
已知函数f(x)=x^3-x-√x.
(1)求函数y=f(x)的零点的个数;
(2)令g(x)=(ax^2+ax)/(f(x)+√x)+lnx,若函数g(x)在(0,1/e)内有极值,求实数a的取值范围;
(3)在(2)的条件下,对任意t∈(1,+∞),s∈(0,1),求证:g(t)-g(s)>e+2-1/e.
(1)解析:∵函数f(x)=x^3-x-√x,其定义域为[0,+∞).
f(0)=0,∴x=0是y=f(x)的一个零点;
当x>0时,f(x)=x(x^2-1-1/√x),
设φ(x)=x^2−1−1/√x,
φ'(x)=2x+1/(2√x^3)>0,∴φ(x)在(0,+∞)上单调递增.
又∵φ(1)=-1<0,φ(2)=3-1/√2>0,
故φ(x)在(1,2)内有一零点,
∴y=f(x)在定义域内有且仅有2个零点;
(2)解析:g(x)=(ax^2+ax)/(f(x)+√x)+lnx=(ax^2+ax)/(x^3-x)+lnx
=ax(x+1)/[x(x+1)(x-1)]+lnx=lnx+a/(x-1),
g(x)=lnx+a/(x-1),其定义域是(0,1)∪(1,+∞),
则g'(x)=1/x-a/(x-1)^2=[x^2-(2+a)x+1]/[x(x-1)^2],
设h(x)=x^2-(2+a)x+1,
要使函数y=g(x)在(0,1/e)内有极值,则h(x)=0有两个不同的根x1,x2,
∴△=(2+a)^2-4>0,得a>0或a<-4,且一根在(0,1/e)内,
不妨设0<x1<1/e,
又∵x1x2=1,
∴0<x1<1/e<e<x2,
∵h(0)=1,则只需h(1/e)<0,即1/e^2−(a+2)•1/e+1<0,
解得a>e+1/e-2,
∴实数a的取值范围为(e+1/e-2,+∞);
(3)证明:∵g(x)=lnx+a/(x-1),其定义域是(0,1)∪(1,+∞),
由(2)可知,当x∈(0,x1)时,g'(x)>0,g(x)单调递增,x∈(x1,1)时,g'(x)<0,g(x)单调递减,
∴y=g(x)在(0,1)内的最大值为g(x1),即对任意s∈(0,1),g(s)≤g(x1),
又当x∈(1,x2)时,g'(x)<0,g(x)递减,x∈(x2,+∞)时,g'(x)>0,g(x)递增,
∴y=g(x)在(1,+∞)内的最小值为g(x2),即t∈(1,+∞)时,g(t)≥g(x2),
由(2)可知x1+x2=2+a,x1x2=1,
x1∈(0,1/e),x2∈(e,+∞),
∵对任意s∈(0,1),t∈(1,+∞),有g(s)≤g(x1),g(t)≥g(x2),
g(s)+ g(x2)≤g(x1)+g(t)
∴g(t)-g(s)≥g(x2)-g(x1)
g(x2)-g(x1)=lnx2+a/(x2-1)-lnx1-a/(x1-1)
=ln(x2/x1)+a/(x2-1)-a/(x1-1)
=lnx2^2+x2-1/x2(x2>e),
令k(x)=lnx^2+x-1/x=2lnx+x-1/x,
k'(x)=2/x+1+1/x^2>0,
∴k(x)在(e,+∞)内单调递增,
故k(x)>k(e)=2+e-1/e,
∴g(t)-g(s)>e+2-1/e.

超级难度导数压轴题
就是大概只有百分之二三十的考生可以做出来,一般大题压轴题是知识及做题速度的综合,所以难度还是比较大的。
求导数过某一点的切线方程
提起高考,相信很多人都经历过那个青葱的岁月,那个曾经挑灯夜战只为一夜成名的努力,只不过有的人跳跃龙门成功了,而有的人则失败了,如今又是一年高考时,今年的高考也是备受大家的关注,特别是数学题更是大家关注的对象,很多考生都说数学题目今年特别难这话一点也不假,今年全国高考数学一卷导数压轴题的难度非常高,很多考生都败在这里,就算是让数学老师来考也不一定能够答得出来,这道题应该是一个拉开分数的分水线,考生们只能在其他学科好好答题弥补这个遗憾了。
一、今年全国高考数学一卷导数压轴题的难度非常高,很多考生都在这道题栽了跟头。
这道压轴题很多考生出考场后都哭了,都说简直是在考验他们数学的极限,想要解答这道题没有半个小时以上的时间是很难答出来的,很多考生都在这道题上栽了跟头,他们已经无力吐槽这道题的难度了,因为已经绝望了。
二、就算是让数学老师来做也不一定能够做得出来。
这道题后来在网上也传开了,很多高三的数学老师也尝试做了解答,很多老师都没有答出来,一部分老师虽然解答出来了可是花费了大量的时间,这在考场上可以说是不是明智之举,因为时间都浪费在这道题上面了,足以见得这道题有多难。
三、很多考生都放弃了这道题,把希望寄托在其他的考试科目上。
以上就是高中导数压轴题的全部内容,(2)令g(x)=(ax^2+ax)/(f(x)+√x)+lnx,若函数g(x)在(0,1/e)内有极值,求实数a的取值范围;(3)在(2)的条件下,对任意t∈(1,+∞),s∈(0,1),求证:g(t)-g(s)>e+2-1/e.(1)解析:∵函数f(x)=x^3-x-√x,其定义域为[0,+∞).f(0)=0。