高中数学数列的公式,数列规律n的三个公式

  • 高中数学
  • 2024-12-12

高中数学数列的公式?1、一般数列的通项an与前n项和Sn的关系:an= 2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。3、等差数列的前n项和公式:Sn= Sn= Sn= 当d≠0时,那么,高中数学数列的公式?一起来了解一下吧。

高考数学所有公式大全

设An为等差数列,d为公差

性质1)An=A1+(n-1)d=Am+(n-m)d

Sn=n(A1+An)/2=nA1+n(n-1)d/2

2)An=Sn-S(n-1),2An=A(n-1)+A(n+1)=A(n-k)+A(n+k)

3)若a+b=c+d,则Aa+Ab=Ac+Ad

设An为某数列,Sn为前n项和,则有以下几点性质:

4)形如Sn=an^2+bn+c(ab≠0),当且仅当c=0时,An为等差数列.即当An为等差数,Sn是不含常数项的关于n的二次函数.

5)形如aAn=bA(n-1)+c(a≠b)的数列,总可以化为等比数列,即令ax=bx+c,即x=c/(a-b),即An-c/(a-b)=a[A(n-1)-c/(a-b)]

所以Bn=An-b/(1-a)为等比数列

6)形如aAn+bA(n-1)+cA(n-2)=0(abc≠0)的数列,总可以化为等比数列,即令ax^2+bx+c=0的根为x1,x2,则

An-x1A(n-1)=x2[A(n-1)-x1A(n-2)]

An-x2A(n-1)=x1[A(n-1)-x2A(n-2)]

令B(n-1)=An-x1A(n-1)..........................(1)

B(n-1)'=An-x2A(n-1)...........................(2)

则Bn,Bn'为等比数列,从而可以求出Bn,Bn'。

数列构造的五种公式

一、高中数列基本公式:

1、一般数列的通项an与前n项和Sn的关系:an=

2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式:Sn=

Sn=

Sn=

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式: an= a1 qn-1an= ak qn-k

(其中a1为首项、ak为已知的第k项,an≠0)

5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

当q≠1时,Sn=

Sn=

三、高中数学中有关等差、等比数列的结论

1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。

2、等差数列{an}中,若m+n=p+q,则

3、等比数列{an}中,若m+n=p+q,则

4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

高中数学公式总结大全

数学公式高中介绍如下:

一、数列定律公式:

1、等差数列中:S奇=na中,例如S13=13a7。

2、等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差。

3、等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立。

4、等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q。

二、常用数列公式:bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2。

三、抛物线公式:k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo。注:(xo,yo)均为直线过圆锥曲线所截段的中点。

四、绝对值不等式公式:∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣。

五、向量a在向量b上的射影公式:〔向量a×向量b的数量积〕/[向量b的模]。

高考数学数列题型总结

高中数学数列通项公式Sn=n*a1+n(n-1)d/2

等差数列前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。等差数列{an}的通项公式为:an=a1+(n-1)d。

等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列求和公式有

①等差数列公式an=a1+(n-1)d、

②前n项和公式为:Sn=na1+n(n-1)d/2、

③若公差d=1时:Sn=(a1+an)n/2、

④若m+n=p+q则:存在am+an=ap+aq、

⑤若m+n=2p则:am+an=2ap,以上n均为正整数。

数列公式总结

数列求和方法

1. 公式法:

等差数列求和公式:Sn=n(a1+an)/2=na1+n(n-1)d/2

等比数列求和公式:Sn=na1(q=1)

Sn=a1(1-qn)/(1-q)=(a1-an×q)/(1-q) (q≠1)

2.错位相减法

适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式

{ an }、{ bn }分别是等差数列和等比数列. Sn=a1b1+a2b2+a3b3+...+anbn

例如:

an=a1+(n-1)d

bn=a1•q(n-1)

Cn=anbn

Tn=a1b1+a2b2+a3b3+a4b4....+anbn

qTn= a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)

Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)

Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn)

=a1b1-an•b1•qn+d•b2[1-q(n-1)]/(1-q)

Tn=上述式子/(1-q)

3.倒序相加法

这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)

Sn=a1+a2+ a3+......+an

Sn=an+ a(n-1)+a(n-3)...... +a1

上下相加得到2Sn 即Sn= (a1+an)n/2

4.分组法

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.

例如:an=2n+n-1

5.裂项法

适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。

以上就是高中数学数列的公式的全部内容,等差数列的通项公式为:an=a1+(n-1)d;前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2。从通项公式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

猜你喜欢