函数综合问题高中?第一题:这种题目称为复合函数的单调性问题。2X-X方看做是G(X)=2X-X方。所谓一元函数单调性通俗的说就是当X增大时,f(x)是增大还是减小,所以,先求出G(X)在定义域(一定要记得求出定义域,本题定义域为R)上的单调区间,比如,此题G(X)在(-无穷,1】上,G(X)为单调递增函数。那么,函数综合问题高中?一起来了解一下吧。
设x1x2
f(x2)-f(x1)=f(x1+(x2-x1))-f(x1)=f(x1)+f(x2-x1)-f(x1)=f(x2-x1)
x2x1 故x2-x10 f(x2-x1)0
f(x)在R是严格减函数,请看条件有没有错
1、f(x)=x^2-(a-1)x+1=[x-(a-1)/2]^2+1-(a-1)^2/4
(1)若函数F(x)=√f(x)的定义域为R,则f(x)=x^2-(a-1)x+1≥0在x属于R内恒成立,函数开口朝上,只需△≤0,即(a-1)^2-4≤0,-1≤a≤3.
(2)若对一切x∈正实数,衡有f(x)≥0成立,从图像分析有两种情况,第一种函数与X轴无交点,即△≤0,-1≤a≤3;第二种因图像与Y轴交与(0,1)所以图像与X轴交点都为负才有f(x)≥0,由维达定理得x1+x2=a-1≤0,得a≤1,综合得
a≤3。
2、由已知得1≤1-2a≤4,1≤4-a^2≤4,1-2a≤4-a^2,综合解得-1≤a≤0。
3、(1)设函数f(x)=ax^2+bx+c,由f(0)=1得c=1,f(x+1)-f(x)=2ax+1+b=2x,
可得a=1,b=-1,函数解析式为f(x)=x^2-x+1
(2)f(x)=x^2-x+1=(x-1/2)^2+3/4,f(x)在(-∞,1/2)单调递减,
在[1/2,+∞)上单调递增,当a+1≤1/2,即a ≤-1/2时,f(x)在[a,a+1]上单调递减,最小值为g(x)=f(a+1)=a^2+a+1,
当a≥1/2时,f(x)在[a,a+1]上单调递增最小值g(x)=f(a)=a^2-a+1;
当a+1/2≤1/2,即a≤0时,最小值g(x)=f(a+1)=a^2+a+1;
当a+1/2≥1/2,即a≥0时,最小值g(x)=f(a)=a^2-a+1;
综合得g(x)=a^2+a+1 (a≤0)
=a^2-a+1 (a≥0)
4、(1)1/3≤a≤1,1≤1/a≤3,f(x)=ax^2-2x+1=a(x-1/a)^2+1-1/a,
最小值为N(a)=1-1/a,
函数定义域为[1,3],2是定义域中点,当1/a≥2时,即a≤1/2时,
最大值为f(1)= a-1≤-1/2,当1/a≤2时,即a≥1/2时,最大值为f(3)= 9a-5≥1/2,所以最大值M(a)=f(3)= 9a-5,g(a)=M(a)-N(a)=9a+1/a-6.
(2) 用函数单调性定义证明,设1/3≤a1 g(a2)-g(a1)=9(a2-a1)+(1/a2-1/a1)=(a2-a1)(9a1a2-1)/a1a2≥0, 所以函数g(a)在[1/3,1]里单调递增,最小值为g(1/3)=0 解:1.(1)据题意得x^2-(a-1)x+1>=0 (a-1)^2-4<=0高中函数零点问题