高中数学题试卷?第一类问题是会的却做错了的题。分明会做,反而做错了的;心知肚明是很有把握的题,却没做对;还有明明会又非常简单的题,却是落笔就错;确实会,答案就在嘴边盘旋,却在考场上怎么也回忆不起来了。有时一走出考场立即就想起来了;有时试卷发下来一看,都不太相信是自己答的,那么,高中数学题试卷?一起来了解一下吧。
2015年高中数学竞赛 复赛试题及答案
一、选择题(本大题共6小题,每小题6分,共36分.每小题各有四个选择支,仅有一个选择支正确.请
把正确选择支号填在答题卡的相应位置.)
1.从集合{1,3,6,8}中任取两个数相乘,积是偶数的概率是
A.5/6 B.2/3 C.1/2 D.1/3
8.随机抽查某中学高二年级100名学生的视力情况,发现学生的视力全部介于4.3至5.2.现将这些数据分成9组,得其频率分布直方图如下.又知前4组的频数成等比数列,后6组的频数成等差数列,则视力在4.6到5.0之间的学生有▲人。
高考结束后,考生们相互之间都会对答案、估分,所以知道有本省的高考试题和答案非常重要,以方便自己参考核对实际考试情况。下面是我为大家整理的关于2022年高考数学全国乙卷(理科)试题答案,如果喜欢可以分享给身边的朋友喔!
2022年高考数学全国乙卷(理科)试题答案
高中数学快速提分技巧
先速度,再准确
做数学题的两个基本指标是快和准。在解决快和准这一对矛盾问题时,不妨先求快,再求准。自己计时做题,在规定时间内完成,然后自我改卷评分。先求“快”,力求做完,再求“准”。很多高考数学做不完,就是平时缺少这种高强度训练的结果。要知道,在高考中,“时间就意味着胜利”。
把“快”列为优先、第一位的因素的理由有:
第一,如上所述,现在的考试,是将熟练程度列入考察因素。要想拿高分,就必须保持一定的解题速度。
第二,从学习心理学讲,做完一件事(尽管不完善)会使人有种成就感。先有了这种成就感,再去追求完美感(少错),是符合人的学习心理的。
教材试卷化角色互换
北京市十三中的高考状元冯平平同学说,她的成绩一直很稳定,但拔不了尖。为了她很苦恼,不知道怎么做才能打破这一局面。
(适用于2011宁夏、海南、河南高考新课改)
海南省海口市2011年高考调研测试
数学试题(文)
注意事项:
1.本次考试的试卷分为试题卷和答题卷,本卷为试题卷,请将答案和解答写在答题卷指定的位置,在试题卷和其它位置解答无效.
2.本试卷满分150分,考试时间120分钟.
参考公式:
样本数据,,,的标准差 锥体体积公式
其中为样本平均数 其中为底面面积,为高
柱体体积公式 球的表面积、体积公式
,
其中为底面面积,为高 其中为球的半径
第Ⅰ卷选择题
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的;每小题选出答案后,请用2B铅笔把机读卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在本卷上作答无效)
1.设全集,集合,
,则图中的阴影部分表示的集合为 ()
A. B.
C. D.
2.若复数是纯虚数,则实数的值为 ()
A.1 B.或1 C. D.或3
3.在一次体检中,测得4位同学的视力数据分别为4.6,4.7,4.8,4.9,若从中一次随机抽取2位同学,则他们的视力恰好相差0.2的概率为
A. B. C. D.
4.关于平面向量,,,有下列四个命题:
① 若∥,,则,使得;
② 若,则或;
③ 存在不全为零的实数,使得;
④ 若,则.
其中正确的命题是 ()
A.①③ B.①④ C.②③ D.②④
5.已知圆A: 与定直线:,且动圆P和圆A外切并与直线相切,则动圆的圆心P的轨迹方程是 ()
A. B. C. D.
6.已知,则的值为 ()
A. B. C. D.
7.设变量满足约束条件则目标函数的最大值为 ()
A.7 B.8 C.10 D.23
8.设为两个不重合的平面,为两条不重合的直线,给出下列四个命题:
①若则;
②若,,则;
③若,则;
④若,则.
其中正确的命题为: ()
A.①② B.①③ C.①②③ D.②③④
9.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析析式是 ()
A.
B.
C.
D.
10.某程序框图如图所示,该程序运行后输出的值是()
A.3 B.4
C.6 D.8
11.一个几何体的三视图如图所示,则该几何体的体积为 ()
A.32 B.33 C.34 D.35
12.已知函数在R上满足,则曲线在点处的切线方程是 ()
A. B. C. D.
第Ⅱ卷非选择题
二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡中的指定位置)
13.设向量,若向量与向量共线,则 .
14.在中,已知为它的三边,且三角形的面积为,则角C=.
15.已知椭圆C的方程为,双曲线D与椭圆有相同的焦点为它们的一个交点,,则双曲线的离心率为.
16.已知函数在区间[1,2]上单调递增,则的取值范围是.
三、解答题:(本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.请将答题的过程写在答题卷中指定的位置)
17.(本小题满分12分)
在等差数列中,,前项和为,等比数列各项均为正数,,且,的公比.
(Ⅰ)求与;
(Ⅱ)求.
18.(本小题满分12分)
某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学, 测得这100名同学身高(单位:厘米) 频率分布直方图如右图:
(Ⅰ) 统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值为165)作为代表.据此,计算这100名学生身高数据的平均值;
(Ⅱ) 如果以身高达170cm作为达标的标准,对抽取的100名学生,得到以下列联表:
体育锻炼与身高达标2×2列联表
身高达标 身高不达标 总计
积极参加
体育锻炼 40
不积极参加
体育锻炼 15
总计 100
(ⅰ)完成上表;
(ⅱ)请问有多大的把握认为体育锻炼与身高达标有关系(K值精确到0.01)?
参考公式:K=,参考数据:
P(Kk) 0.40 0.25 0.15 0.10 0.05 0.025
k 0.708 1.323 2.072 2.706 3.841 5.024
19.(本小题满分12分)
在四棱锥P—ABCD中,平面平面,,底面ABCD是边长为2的菱形,,E是AD的中点,F是PC中点.
(Ⅰ)求证:
(Ⅱ)求证:EF//平面PAB。
因f(x)和g(x)分别是奇函数与偶函数
故f(-x)=
-f(x),g(-x)=
g(x),
又f(x)+g(x)=1/(x-1),把
-x带入得
f(-x)+g(-x)=1/(-x-1)
即-f(x)
+
g(x)
=
1/(-x-1)
跟f(x)+g(x)=1/(x-1)合为两元一次方程
解得
f(x)
=
x/(x^2
-
1)
g(x)
=
1/(x^2
-
1)
高中数学合集百度网盘下载
链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ
提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
以上就是高中数学题试卷的全部内容,数学选择题要求知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。