高中分类讨论思想例题,初中数学数形结合思想例题

  • 高中数学
  • 2025-06-01

高中分类讨论思想例题?分类讨论思想在解题中的应用分类讨论思想在解题中的应用分类讨论思想在解题中的应用分类讨论思想在解题中的应用 一一一一、、、知识整合知识整合知识整合知识整合 1.分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,那么,高中分类讨论思想例题?一起来了解一下吧。

初中数学数形结合思想例题

分类讨论思想在解题中的应用分类讨论思想在解题中的应用分类讨论思想在解题中的应用分类讨论思想在解题中的应用 一一一一、、、、知识整合知识整合知识整合知识整合1.分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置。 2.所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。 3.分类原则:分类对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。 4.分类方法:明确讨论对象,确定对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论。 5.含参数问题的分类讨论是常见题型。 6.注意简化或避免分类讨论。 二二二二、、、、例题分析例题分析例题分析例题分析例1.一条直线过点(5,2),且在x轴,y轴上截距相等,则这直线方程为() A. xy+−=70 B. 250xy−= C. xyxy+−=−=70250或D. xyyx++=−=70250或 分析:设该直线在x轴,y轴上的截距均为a, 当a=0时,直线过原点,此时直线方程为yxxy=−=25250,即; 当a≠0时,设直线方程为xayaa+==17,则求得,方程为xy+−=70。

几何分类讨论思想例题

高中数学基本数学思想

1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果.高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境. 例证

2.逻辑划分思想(即分类与整合思想):是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准. 例证

3. 函数与方程思想(即联系思想或运动变化的思想):就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想.

4.数形结合思想:将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.

5. 整体思想:处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.

在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.

中学数学中还有一些数学思想,如:

集合的思想;

补集思想;

归纳与递推思想;

对称思想;

逆反思想;

类比思想;

参变数思想

有限与无限的思想;

特殊与一般的思想。

数形结合思想例题

在有多种情况时

问题:

已知y、z都是质数,且1/x+1/y=3/z.

求;1998x+5y+3z的值.

由1/x+1/y=3/z得1/x = 3/z - 1/y =(3y-z)/(yz)所以:x=yz/(3y-z),下面讨论y z为何值时,x为整数(若x不为整数,那这个题目就没法做了)

1.若y z 都为奇质数,则yz为奇,(3y-z)为偶,此时x不可能为整数.故y z 中至少有一个为偶质数2.

2.若y=2,z为奇质数或z=2,y为奇质数,则yz为偶,(3y-z)为奇,此时x也不可能为整数.

可知y=z=2,此时x=1,所以原式=1998+10+6=2014

数学的基本思想及例题

高中数学基本数学思想

1.转化与化归思想:

是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境. 例证

2.逻辑划分思想(即分类与整合思想):

是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准. 例证

3. 函数与方程思想(即联系思想或运动变化的思想):

就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想.

4. 数形结合思想:

将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.

5. 整体思想:

处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.

在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.

中学数学中还有一些数学思想,如:

集合的思想;

补集思想;

归纳与递推思想;

对称思想;

逆反思想;

类比思想;

参变数思想

有限与无限的思想;

特殊与一般的思想.

它们大多是本文所述基本数学思想在一定知识环境中的具体体现.所以在中学数学中,只要掌握数学基础知识,把握代数,三角,立体几何,解析几何的每部分的知识点及联系,掌握几个常用的基本数学思想和将它们统一起来的整体思想,就定能找到解题途径.提高数学解题能力.

数学解题中转化与化归思想的应用

数学活动的实质就是思维的转化过程,在解题中,要不断改变解题方向,从不同角度,不同的侧面去探讨问题的解法,寻求最佳方法,在转化过程中,应遵循三个原则:1、熟悉化原则,即将陌生的问题转化为熟悉的问题;2、简单化原则,即将复杂问题转化为简单问题;3、直观化原则,即将抽象总是具体化.

策略一:正向向逆向转化

一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径.

例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.

A、150 B、147 C、144 D、141

分析:本题正面入手,情况复杂,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简单多了.

10个点中任取4个点取法有 种,其中面ABC内的6个点中任取4点都共面有 种,同理其余3个面内也有 种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种, 不共面取法有 种,应选(D).

策略二:局部向整体的转化

从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗.

例2:一个四面体所有棱长都是 ,四个顶点在同一球面上,则此球表面积为( )

A、 B、 C、 D、

分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,容易出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为 ,所以正方体棱长为1,从而外接球半径为 ,应选(A).

策略三:未知向已知转化

又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧妙进行类比转换,答案就会应运而生.

例3:在等差数列 中,若 ,则有等式

( 成立,类比上述性质,在等比数列 中, ,则有等式_________成立.

分析:等差数列 中, ,必有 ,

,

故有 类比等比数列 ,因为

,故 成立.

逻辑划分思想

例题1、已知集合 A= ,B= ,若B A,求实数 a 取值的集合.

解 A= : 分两种情况讨论

(1)B=¢,此时a=0;

(2)B为一元集合,B= ,此时又分两种情况讨论 :

(i) B={-1},则 =-1,a=-1

(ii)B={1},则 =1, a=1.(二级分类)

综合上述 所求集合为 .

例题2、设函数f(x)=ax -2x+2,对于满足1≤x≤4的一切x值都有f(x)≥ 0,求实数a的取值范围.

例题3、已知 ,试比较 的大小.

【分析】

于是可以知道解本题必须分类讨论,其划分点为 .

小结:分类讨论的一般步骤:

(1)明确讨论对象及对象的范围P.(即对哪一个参数进行讨论);

(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级讨论.;

(3)逐类讨论,获取阶段性结果.(化整为零,各个击破);

(4)归纳小结,综合得出结论.(主元求并,副元分类作答).

分类讨论思想例题

在解决数学问题时,遵循三个核心原则至关重要:

首先,熟悉化原则,即将未知或复杂的题设转化为已知或简单的形式,简化问题的结构。

其次,简单化原则,将问题分解为一系列简单步骤,避免陷入复杂运算。例如,解决几何问题时,将四面体的顶点和各棱中点共10个点的取法问题,通过反向思考,从四点共面的取法入手,减小计算难度,最终得出答案。

再者,直观化原则,将抽象概念具体化,便于理解和操作,如将四面体补形成正方体,使问题变得直观明了。

策略一:正向向逆向转化

采用逆向思维,从问题的结论出发,寻找可能的解法。以四面体取点问题为例,从反面考虑,先计算所有四点共面的取法,再利用补集思想计算不共面的取法,简化了计算过程。

策略二:局部向整体的转化

从整体把握问题,避免陷入细节。如求解四面体的外接球表面积,通过补全正四面体为正方体,利用正方体的性质简化问题,从而求解。

策略三:未知向已知转化

通过类比或相似性寻找解题线索。如等差数列问题,通过与等比数列类比,发现相似性,快速求解。

逻辑划分思想

对于集合问题,通过划分集合,明确边界条件,如集合A与B的关系,将参数a的取值范围分情况讨论。

解决函数问题时,确定参数a的取值范围,要求函数f(x)在给定区间内非负。

以上就是高中分类讨论思想例题的全部内容,2. 数形结合思想 利用“数形结合”将代数和几何相结合,如解析几何问题用代数方法解答,代数问题用几何方法解答。例如,通过坐标系分析点到四点的距离,解决复杂几何问题。数形结合使问题化繁为简,化难为易。3. 分类讨论思想 对于问题中变量或图形不同情况可能引起结果不同的问题,需要分类讨论。例如,内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。

猜你喜欢