高中导函数知识点总结,函数极限定义证明例题

  • 高中数学
  • 2024-03-08

高中导函数知识点总结?若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),x?f'(x)也是一个函数,称作f(x)的导函数。那么,高中导函数知识点总结?一起来了解一下吧。

导数高中知识点总结公式

导数是高中数学选修1-1和1-2的必修内容。

一、导数的概念

1、导数表示函数在某一点处的变化率。

2、导数可以通过求函数的极限来定义,也可以通过求函数的斜率来计算。

3、导数可以是实数,也可以是无穷大或无穷小。

二、导数的性质

1、导数具有线性性质,即对于函数和常数的乘积、和、差以及导数运算符的乘积,都符合线性运算法则。

2、导数可以用于判断函数的增减性。导数大于零,则函数在该点增加;导数小于零,则函数在该点减少。

3、导数还可以用于求函数的最值、凹凸性以及函数图像的切线方程等问题。

三、导数的应用

1、在物理学当中,导数可以描述物体位置的变化率,从而用于求解速度、加速度等相关问题。

2、在经济学当中,导数可以描述商品需求的变化率,从而用于分析市场供需关系、定价策略等问题。

3、在工程学当中,导数可以用于优化问题,确定最佳生产方案、最短路径规划等。

导数、极值、高阶导数与导数的应用

一、极值与导数

导数可以帮助我们找到函数的极大值和极小值点,通过求解导数为零的方程来确定。

极值点是函数图像中的特殊点,有助于了解函数的局部性质。

二、高阶导数

导数的概念可以进一步推广到高阶导数,表示导数的导数。

高中导数知识点整理总结

对于高考数学中的导数部分,也是比较难得,下面我为大家整理了一些关于导数的知识点解题技巧。

-

数学导数高考考查范围:

1、了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。

2、熟记基本导数公式;掌握两个函数和、差、积、商的求导法则。了解复合函数的求导法则,会求某些简单函数的导数。

3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。

导数的基本知识点题型

1.题型:

1).切线问题。

2).单调性,极值,值域,最值问题。

3).函数零点(方程的根)的个数和分布问题。

4).不等式恒成立、存在性、不等式证明问题。

5).与数列、不等式、解析几何的综合问题。

2.常规步骤:

1)求导数并变形,写出定义域。

变形的方法:

①.整式:因式分解或配方。

②.分式:通分母,并因式分解。

③.指数式:提取公因式。

④根式:分子有理化

2)解方程 , 判断导数的正负

判断导数正负的方法:

①.检验法。②.图像法。③.单调性法。④.求导数的导数。

3)列表由导函数的正负确认原函数的单调性和极值、最值

4)画函数草图解决问题。

函数的基本性质

24个基本求导公式如下:

1、C'=0(C为常数)。

2、(xAn)'=nxA(n——1)。

3、(sinx)'=cosx。

4、(cosx)'=——sinx。

5、(Inx)'=1/x。

6、(enx)'=enx。

7、 (logaX)'=1/(xlna)。

8、 (anx)'=(anx)*ina。

9、(u±V)'=u'±V'。

10、 (uv)'=u'v+uv'。

11、 (u/v)'=(u'v——uv')/v。

12、 f(g(x))'=(f(u))'(g(x))'u=g(x)。

导函数:

如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)。如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间【a,b】上可导,f'(x)为区间【a,b】上的导函数,简称导数。

条件:如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是在定义域上处处可导是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。

导数恒成立和存在性问题

导数基础

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=arcsinx y'=1/√1-x^2

10.y=arccosx y'=-1/√1-x^2

11.y=arctanx y'=1/1+x^2

12.y=arccotx y'=-1/1+x^2

在推导的过程中有这几个常见的公式需要用到:

1.y=f[g(x)],y'=f'[g(x)]g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』

2.y=u/v,y'=u'v-uv'/v^2

3.y=f(x)的反函数是x=g(y),则有y'=1/x'

证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。

导数知识点及题型归纳详解

追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。那么接下来给大家分享一些关于高中导数知识点总结大全,希望对大家有所帮助。

目录

高中导数知识点总结

高中数学的学习方法

如何提升高中数学成绩

高中导数知识点总结

1、导数的定义:在点处的导数记作.

2.导数的几何物理意义:曲线在点处切线的斜率

①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;

⑤;⑥;⑦;⑧。

4.导数的四则运算法则:

5.导数的应用:

(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:

①求导数;

②求方程的根;

③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

(3)求可导函数值与最小值的步骤:

ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

以上就是高中导函数知识点总结的全部内容,2.y=u/v,y'=u'v-uv'/v^2 3.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。

猜你喜欢