高一上学期数学学什么?必修1主要是集合与函数;必修2主要是空间几何体,点与直线平面的关系,直线与方程,圆与方程;必修4主要是三角函数和平面向量;必修5主要是解三角形,数列和不等式。高中数学共学习11本书,其中必修5本,选修6本。那么,高一上学期数学学什么?一起来了解一下吧。
高一上学期有的地方是学习必修一和必修四,必修一的主要内容是《集合》、《函数》,必修四的主要内容是《三角函数》、《向量》,但是有些地方是学习必修一和必修二,必修二的主要内容是《立体几何》,简单的《解析几何》,如初中所学习的直线方程,园的方程以及他们的一些性质关系等。
在高一上学期,必修一是一定要学的,函数这一章一定要学好,包括函数的概念,图像,性质以及一些基本函数,如二次函数,指数函数,对数函数,幂函数等。
高中数学内容有如下:
一、某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
二、通常用大写字母表示集合,用小写字母表示元素。
三、一个集合中,每个元素的地位都是相同的,元素之间是无序的。
四、集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。
五、集合中元素的数目称为集合的基数,集合A的基数记作card(A)。
整个高一要学习的内容:
第一章 集合与简易逻辑
◇ 1.1 集合 教案
◇ 1.1 集合 教案2
◇ 1.1 集合 教案3
◇ 1.2 子集、全集、补集教案
◇ 1.2 子集、全集、补集教案2
◇ 1.2 子集、全集、补集教案3
◇ 1.3 交集、并集 教案
◇ 1.3 交集、并集 教案2
◇ 1.3 交集、并集 教案3
◇ 集合小结 教案
◇ 1.4 含绝对值的不等式解法
◇ 1.4 含绝对值的不等式解法2
◇ 1.5 一元一次不等式解法
◇ 1.5 一元一次不等式解法2
◇ 1.6 逻辑联结词教案
◇ 1.6 逻辑联结词教案2
◇ 1.7 四种命题 教案
◇ 1.7 四种命题 教案2
◇ 1.8 充分条件与必要条件
◇ 1.8 充分条件与必要条件2
第二章 函数
◇ 2.1 函数 教案
◇ 2.1 函数的定义域与区间
◇ 2.2 函数的表示法教案
◇ 2.2 函数的表示法教案2
◇ 2.3 函数的单调性教案
◇ 2.3 函数的单调性教案2
◇ 2.4 反函数 教案
◇ 2.4 反函数 教案2
◇ 2.4 反函数 教案3
◇ 2.5 指数 教案
◇ 2.5 指数 教案2
◇ 2.5 指数 教案
◇ 2.6 指数函数 教案
◇ 2.6 指数函数 教案2
◇ 2.6 指数函数 教案3
◇ 2.7 对数 教案1
◇ 2.7 对数 教案2
◇ 2.7 对数 教案3
◇ 2.8 对数函数 教案
◇ 2.8 对数函数 教案2
◇ 2.8 对数函数 教案3
◇ 2.9 函数的应用举例
◇ 2.9 函数的应用举例2
◇ 2.9 函数的应用举例3
◇ 函数小结教案
第三章 数列
◇ 3.1 数列 教案
◇ 3.1 数列 教案2
◇ 3.2 等差数列 教案
◇ 3.2 等差数列 教案2
◇ 3.3 等差数列的前n项和
◇ 3.3 等差数列的前n项和2
◇ 3.4 等比数列 教案
◇ 3.4 等比数列 教案2
◇ 3.5 等比数列的前n项和
◇ 3.5 等比数列的前n项和2
◇ 数列在分期付款中的应用
◇ 数列在分期付款中的应用2
◇ 数列复习小结教案
高一数学教案
第四章 三角函数
◇ 4.1 角的概念的推广
◇ 4.1 角的概念的推广2
◇ 4.2 弧度制 教案
◇ 4.2 弧度制 教案2
◇ 4.3 任意角的三角函数
◇ 4.3 任意角的三角函数2
◇ 4.4同角三角函数的基本关系式
◇ 4.4同角三角函数的基本关系式2
◇ 4.5 正弦、余弦的诱导公式
◇ 4.5 正弦、余弦的诱导公式2
◇ 4.5 正弦、余弦的诱导公式3
◇ 4.6 两角和与差的正弦余弦正切
◇ 4.6 两角和与差的正弦余弦正切2
◇ 4.6 两角和与差的正弦余弦正切3
◇ 4.6 两角和与差的正弦余弦正切4
◇ 4.7 二倍角的正弦、余弦、正切
◇ 4.7 二倍角的正弦、余弦、正切2
◇ 4.7 二倍角的正弦、余弦、正切3
◇ 正弦函数、余弦函数的图象和性质
◇ 正弦函数、余弦函数的图象和性质2
◇ 正弦函数、余弦函数的图象和性质3
◇ 4.9 函数的图象 教案
◇ 4.9 函数的图象 教案2
◇ 4.9 函数的图象 教案3
◇ 4.10 正切函数的图象和性质
◇ 4.10 正切函数的图象和性质2
◇ 4.11 已知三角函数值求角
◇ 4.11 已知三角函数值求角2
第五章 平面向量
◇ 5.1 向量 教案
◇ 5.2 向量的加法与减法
◇ 5.2 向量的加法与减法2
◇ 5.3 实数与向量的积
◇ 5.3 实数与向量的积2
◇ 5.4 平面向量的坐标运算
◇ 5.4 平面向量的坐标运算2
◇ 5.5 线段的定比分点
◇ 5.6 平面向量的数量积及运算律
◇ 5.6 平面向量的数量积及运算律2
◇ 5.7 平面向量数量积的坐标表示
◇ 5.8 平移 教案
◇ 5.9 正弦定理、余弦定理
◇ 5.9 正弦定理、余弦定理2
◇ 5.9 正弦定理、余弦定理3
◇ 5.10 解斜三角形应用举例
◇ 5.10 解斜三角形应用举例2
◇向量在物理中的应用
不同学校不一样。
高一数学必修有5本,必修1到必修5。高一上必修1、必修2、必修4、必修5。高二上必修3和选修。必修1主要是集合与函数;必修2主要是空间几何体,点与直线平面的关系,直线与方程,圆与方程;必修4主要是三角函数和平面向量;必修5主要是解三角形,数列和不等式。
高中数学共学习11本书,其中必修5本,选修6本。必修课本为必修1、2、3、4、5,选修课本为选修2-1,2-2,2-3,4-1(几何证明选讲),4-4(坐标系与参数方程),4-5(不等式选讲)。
高考范围的书:
高考范围为必修1、2、3、4、5,选修课本为选修2-1,2-2,2-3,而选修4-1(几何证明选讲),4-4(坐标系与参数方程),4-5(不等式选讲),三选二,共10本。
就教学进度来说,各个学校可根据实际情况安排。就我们学校来说,先学习高考考察的主干知识,再学习零散知识,速度由慢到快,深度有难到易,难度自始至终与广东高考理科数学难度相当。
高一第一学期刚开学不讲上述11本书的内容,而是对初、高中的知识进行衔接,继续深入探讨二次函数的性质和应用,韦达定理,二次根式,因式分解等。
高一数学的主要内容包括函数与方程、三角函数、数列与数学归纳法以及不等式与推理证明等四个方面。
1、函数与方程:高一数学一开始就引入了函数的概念,通过研究函数的性质和图像,可以更好地理解函数的表达方式以及函数与方程之间的关系。这部分内容还包括了方程的求解,通过对方程的研究,可以了解方程的根与函数图像之间的关系。
2、三角函数:三角函数是高一数学的重要内容之一,包括正弦、余弦、正切等函数的定义、性质和图像。通过学习三角函数,可以更好地理解周期性、振幅等概念,为后续的学习打下基础。
3、数列与数学归纳法:数列是高一数学的一个重要知识点,包括了等差数列、等比数列等类型。同时,数学归纳法也是高一数学的一个重要方法,通过数学归纳法可以证明一些递推关系和恒等式。
4、不等式与推理证明:不等式是高一数学的一个重要内容,包括了一元二次不等式、分式不等式等类型。推理证明则是高一数学中另一个重要的知识点,通过推理证明可以证明一些数学命题和结论。
高一数学的学习技巧:
1、掌握基础知识:高一数学的学习内容相对较少,难度也不是很大,因此需要掌握好基础知识,如代数、几何、三角函数等。
高一数学教材的内容主要包括基本数学、代数、几何、统计与概率、微积分等方面。
基本数学方面,主要包括数的基本概念、运算法则与运算技巧、分数与小数、平方根与立方根、百分数与分式、因式分解与合并、乘方与开方、等比数列与等差数列。代数方面,主要包括变量与表达式、一元一次方程与不等式、二次方程与二次不等式、直线与圆的方程及性质。几何方面,主要包括直角坐标系中的向量运算及应用;直角坐标系中的直线及圆;平面向量及其运算;平面图形的性质;立体几何中的平面图形。
统计与概率方面,主要包括随机事件的概念及其性质;条件概率;独立性;互斥性;乘法法则;加法法则;贝叶斯定理。微积分方面,主要包括微元函数的定义域和导函数的定义域;导函数的性质;复合函数的导函数;反函数的导函数。
自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费领取复习资料:https://www.87dh.com/xl/
以上就是高一上学期数学学什么的全部内容,高中数学课本的学习顺序是:高一上学期学习必修一和必修四,必修一的主要内容是《集合》,《函数》,必修四的主要内容是《三角函数》,《向量》。必修三中的内容包括《统计初步》,《算法》,《概率》。