高中数学几何体公式?圆环体环体半径R,环体直径D,环体截面半径r,环体截面直径d,V=2π2Rr2=π2Dd2/4 桶状体桶腹直径D,桶底直径d,桶高h,V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心),V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)立体几何的意义及八大定理 数学上,那么,高中数学几何体公式?一起来了解一下吧。
表面积计算
1、直棱柱和正棱锥的表面积
设棱柱高为h、底面多边形的周长为c、则得到直棱柱侧面面积计算公式:
S=ch、即直棱柱的侧面积等于它的底面周长和高的乘积、
正棱锥的侧面展开图是一些全等的等腰三角形、底面是正多边形、
如果设它的底面边长为a、底面周长为c、斜高为h'、则得到正n棱锥的侧面积计算公式
S=1/2*nah'=1/2*ch'、即正棱锥的侧面积等于它的底面的周长和斜高乘积的一半、
2、正棱台的表面积
正棱台的侧面展开图是一些全等的等腰梯形、
设棱台下底面边长为a、周长为c、上底面边长为a'、周长为c'、斜高为h'则得到正n棱台的侧面积公式: S=1/2*n(a+a')h'=1/2(c+c')h'、
3、球的表面积
S=4πR^2、即球面面积等于它的大圆面积的四倍、
4.圆台的表面积
圆台的侧面展开图是一个扇环,它的表面积等于上,下两个底面的面积和加上侧面的面积,即
S=π(r'^2+r^2+r'l+rl)
体积计算
1、长方体体积:V=abc=Sh
2、柱体体积
所有柱体:V=Sh、即柱体的体积等于它的底面积S和高h的积、
圆柱:V=πr^2h、
3、棱锥:V=1/3*Sh
4、圆锥:V=1/3*πr^2h
5、棱台:V=1/3*h(S+(√SS')+S')
6、圆台:V=1/3*πh(r^2+rr'+r'^2)
7、球:V=4/3*πR^3
扩展资料:
基本空间几何体
多面体
概念:多面体是由若干个平面多边形所围成的几何体。
立体几何所有公式如下:
1、平面图形(名称符号周长C和面积S)
正方形边长a,C=4a,S=a2
长方形边长a和b,C=2(a+b),S=ab
三角形边长a,b,c,a边上的高h,周长的一半s,内角A,B,C,其中s=(a+b+c)/2,S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)
四边形边长d,对角线长D,对角线夹角a,S=dD/2·sinα
平行四边形边长a,b,a边的高h,两边夹角α,S=ah=absinα
菱形边长a,夹角α,长对角线长D,短对角线长d,S=Dd/2=a2sinα
梯形上、下底长a和b,高h,中位线长m,S=(a+b)h/2=mh
圆半径r,直径d,C=πd=2πrS=πr2=πd2/4
扇形半径r,圆心角度数a,C=2r+2πr×(a/360),S=πr2×(a/360)
弓形弧长l,弦长b,矢高h,半径r,圆心角的度数α,S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2=παr2/360-b/2·[r2-(b/2)2]1/2=r(l-b)/2+bh/2≈2bh/3
圆环外圆半径R,内圆半径r,外圆直径D,内圆直径d,S=π(R2-r2)=π(D2-d2)/4
椭圆长轴D,短轴d,S=πDd/4
2、立方图形(名称符号面积S和体积V)
正方体边长a,S=6a2,V=a3
长方体长a,宽b,高c,S=2(ab+ac+bc,V=abc
棱柱底面积S,高h,V=Sh
棱锥底面积S,高h,V=Sh/3
棱台上、下底面积S1和S2,高h,V=h[S1+S2+(S1S1)1/2]/3
拟柱体上底面积S1,下底面积S2,中截面积S0,高h,V=h(S1+S2+4S0)/6
圆柱底半径r,高h,底面周长C,底面积S底,侧面积S侧,表面积S表,C=2πr,S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
空心圆柱外圆半径R,内圆半径r,高h,V=πh(R2-r2)
直圆锥底半径r,高h,V=πr2h/3
圆台上底半径r,下底半径R,高h,V=πh(R2+Rr+r2)/3
球半径r,直径d,V=4/3πr3=πd2/6
球缺球缺高h,球半径r,球缺底半径a,V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)
球台球台上、下底半径r1和r2,高h,V=πh[3(r12+r22)+h2]/6
圆环体环体半径R,环体直径D,环体截面半径r,环体截面直径d,V=2π2Rr2=π2Dd2/4
桶状体桶腹直径D,桶底直径d,桶高h,V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心),V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
立体几何的意义及八大定理
数学上,立体几何是三维欧氏空间的几何的传统名称,因为实际上这大致上就是我们生活的空间。
长方体:
表面积:2(ab+ah+bh)
体积:abh(a为长方体的长,b为长方体的宽,h为长方体的高)
正方体:
表面积:6a^2
体积:a^3(a为正方体棱长)
圆柱体:
表面积:2πr^2+2πrh
体积:πr^2h (r为圆柱体上下底圆半径,h为圆柱体高)
圆锥体:
表面积:πr^2+πr根号下(h^2+r^2)
体积: πr^2h/3 (r为圆锥体低圆半径,h为其高)
直棱柱和正棱锥的表面积
设棱柱的高为h,底面多边形的周长为c,则直棱柱的侧面积公式是:S直棱柱侧面积=ch
即直棱柱的侧面积等于它的底面周长和高的乘积。
设正棱锥的底面边长为a,底面周长为c,斜高为h’,则正棱锥的侧面积公式是:
S正棱锥侧 =nah’=ch’
即正棱锥的侧面积等于它的底面周长和斜高的乘积的一半。
棱柱和棱锥的表面积或全面积等于侧面积与底面积的和。
正棱台的表面积
设棱台下底面边长为a,周长为c,上底面边长为a’,周长为c’,斜高为h’,则正棱台的侧面积公式
S正棱台侧 =n(a+a’)h’=(c+c’)h’
棱台的表面积或全面积等于侧面积与底面积的和。
还有去这看
http://360edu.com/tongbu/gaoyi/7814/g1sxfb814b.htm
应该有你要的(看7-15)
几何体的表面积,体积计算公式
1、圆柱体:
表面积:2πRr+2πRh 体积:πR²h (R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πR²+πR[(h²+R²)的平方根] 体积:πR²h/3 (r为圆锥体低圆半径,h为其高,
3、正方体
a-边长,S=6a² ,V=a³
4、长方体
a-长 ,b-宽 ,c-高 S=2(ab+ac+bc) V=abc
5、棱柱
S-底面积 h-高 V=Sh
6、棱锥
S-底面积 h-高 V=Sh/3
7、棱台
S1和S2-上、下底面积 h-高 V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积 ,S2-下底面积 ,S0-中截面积
h-高,V=h(S1+S2+4S0)/6
9、圆柱
r-底半径 ,h-高 ,C—底面周长
S底—底面积 ,S侧—侧面积 ,S表—表面积 C=2πr
S底=πr²,S侧=Ch ,S表=Ch+2S底 ,V=S底h=πr²h
10、空心圆柱
R-外圆半径 ,r-内圆半径 h-高 V=πh(R^2-r^2)
11、直圆锥
r-底半径 h-高 V=πr^2h/3
12、圆台
r-上底半径 ,R-下底半径 ,h-高 V=πh(R²+Rr+r²)/3
13、球
r-半径 d-直径 V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径 V=πh(3a²+h²)/6 =πh²(3r-h)/3
15、球台
r1和r2-球台上、下底半径 h-高 V=πh[3(r1²+r2²)+h²]/6
16、圆环体
R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径
V=2π2Rr² =π2Dd²/4
17、桶状体
D-桶腹直径 d-桶底直径 h-桶高
V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心)
V=πh(2D²+Dd+3d²/4)/15 (母线是抛物线形)
1、直棱柱和正棱锥的表面积
设棱柱高为h、底面多边形的周长为c、则得到直棱柱侧面面积计算公式:
S=ch、即直棱柱的侧面积等于它的底面周长和高的乘积、
正棱锥的侧面展开图是一些全等的等腰三角形、底面是正多边形、
如果设它的底面边长为a、底面周长为c、斜高为h'、则得到正n棱锥的侧面积计算公式
S=1/2*nah'=1/2*ch'、即正棱锥的侧面积等于它的底面的周长和斜高乘积的一半、
2、正棱台的表面积
正棱台的侧面展开图是一些全等的等腰梯形、
设棱台下底面边长为a、周长为c、上底面边长为a'、周长为c'、斜高为h'则得到正n棱台的侧面积公式: S=1/2*n(a+a')h'=1/2(c+c')h'、
3、球的表面积
S=4πR^2、即球面面积等于它的大圆面积的四倍、
4.圆台的表面积
圆台的侧面展开图是一个扇环,它的表面积等于上,下两个底面的面积和加上侧面的面积,即
S=π(r'^2+r^2+r'l+rl)
体积计算
1、长方体体积:V=abc=Sh
2、柱体体积
所有柱体:V=Sh、即柱体的体积等于它的底面积S和高h的积、
圆柱:V=πr^2h、
3、棱锥:V=1/3*Sh
4、圆锥:V=1/3*πr^2h
5、棱台:V=1/3*h(S+(√SS')+S')
6、圆台:V=1/3*πh(r^2+rr'+r'^2)
7、球:V=4/3*πR^3
扩展资料:
基本空间几何体
多面体
概念:多面体是由若干个平面多边形所围成的几何体。
以上就是高中数学几何体公式的全部内容,1、圆柱体: 表面积:2πRr+2πRh 体积:πR²h (R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:πR²+πR[(h²+R²)的平方根] 体积: πR²h/3 (r为圆锥体低圆半径,h为其高, 3、正方体 a-边长, S=6a² ,V=a³4、。