高中根式的运算,根与系数关系公式

  • 高中数学
  • 2024-07-14

高中根式的运算?1、√ab=√a·√b﹙a≥0b≥0﹚ 这个可以交互使用.这个最多运用于化简,如:√8=√4·√2=2√2 2、√a/b=√a÷√b﹙a≥0b﹥0﹚3、√a²=|a|(其实就是等于绝对值)这个知识点是二次根式重点也是难点。当a>0时,√a²=a(等于它的本身);当a=0时,那么,高中根式的运算?一起来了解一下吧。

根式计算公式

1、√ab=√a·√b﹙a≥0b≥0﹚ 这个可以交互使用.这个最多运用于化简,如:√8=√4·√2=2√2

2、√a/b=√a÷√b﹙a≥0b﹥0﹚

3、√a²=|a|(其实就是等于绝对值)这个知识点是二次根式重点也是难点。当a>0时,√a²=a(等于它的本身);当a=0时,√a²=0;当a<0时,√a²=-a(等于它的相反数)

4、分母有理化:分母不能有二次根式或者不能含有二次根式。当分母中只有一个二次根式,那么利用分式性质,分子分母同时乘以相同的二次根式。如:分母是√3,那么分子分母同时乘以√3。

当分母中含有二次根式,利用平方差公式使分母有理化。具体方法,如:分母是√5 -2(表示√5与2的差)要使分母有理化,分子分母同时乘以√5+2(表示√5与2的和)

扩展资料

1、与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数...从而使运算得到简化。

2、在一个只有加减法运算的算式中,给算式的一部分添上括号,如果括号前面是加号,那么括号里面的运算符号都不改变;如果括号前面是减号,那么括号里面的运算符号都要改变,即加号变减号,减号变加号。

根的判别式求根公式

根号的四则运算公式:√a*√b=√ab(a≥0,b≥0),√a/√b=√a/b(a≥0,b>0),如√75+√2-√8+√27=5√3+√2-2√2+3√3=8√3-√2。

根式的加减:首先将根式转化为最简根式,然后找出同类根式,类似于合并同类项进行加减。

根式运算注意事项:

1、根式相加减,先把各根式化为最简根式,再合并同类根式。

2、根式的乘除法常用乘法公式或除法公式来简化计算,运算结果一定要写成最简根式。

3、利用三角形的三边关系进行化简。利用根式的双重非负性的性质,被开方数开方出来后,等于它的绝对值。

根式的运算法则全部

根式运算法则如下:

相乘时:两个有平方根的数相乘等于根号下两数的乘积,再化简。

相除时:两个有平方根的数相除等于根号下两数的商,再化简。

相加或相减:没有其他方法,只有用计算器求出具体值再相加或相减。

根式是数学的基本概念之一,是一种含有开方(求方根)运算的代数式,即含有根号的表达式。按根指数是偶数还是奇数,根式分别称为偶次根式或奇次根式。

若x的n次方=a,则x叫作a的n次方根,记作n√a=x,n√a叫做根式。根式的各部分名称:在根式n√a中,n叫做根指数,a叫做被开方数,“√”叫做根号。

根式中含有开方运算的代数式,如n√a=x(n为大于1的正整数,n为奇数时,a为一切实数;n为偶数时,a≥0),其中a叫作被开方数。

根式的来源

法国数学家笛卡尔(1596~1650年)第一个使用了现今用的根号“√ ̄”。有时被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√ ̄(不过,它比路多尔夫的根号多了一个小钩)就为现时根号形式。

立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号的使用,比如25的立方根用表示。以后,诸如√ ̄等等形式的根号渐渐使用开来。

根号运算法则高中

根式的运算法则为:同次根式相乘,把根式前面的系数相乘,作为积的系数;把被开方数相乘,作为被开方数,根指数不变,然后再化成最简根式。非同次根式相乘,应先化成同次根式后,再按同次根式相乘的法则进行运算。

根式定义:若x的n次方=a,则x叫作a的n次方根,记作n√a=x,n√a叫做根式。根式的各部分名称:在根式n√a中,n叫做根指数,a叫做被开方数,“√”叫做根号。

根式中含有开方运算的代数式,如n√a=x(n为大于1的正整数,n为奇数时,a为一切实数;n为偶数时,a≥0),其中a叫作被开方数。

根式运算公式

1、ᐢ√a×ᐢ√b=ᐢ√(ab),成立条件:a≥0,b>0,n≥2且n∈N。

2、ᐢ√a÷ᐢ√b=ᐢ√(a/b),成立条件:a≥0,b>0,n≥2且n∈N。

根式乘除法法则:

1、同次根式相乘(除),把根式前面的系数相乘(除),作为积(商)的系数;把被开方数相乘(除),作为被开方数,根指数不变,然后再化成最简根式。

2、非同次根式相乘(除),应先化成同次根式后,再按同次根式相乘(除)的法则进行运算。

扩展资料

根式的加减法法则:各个根式相加减,应先把根式化成最简根式,然后合并同类根式。二次根式加减法法则:先把各个二次根式化简成最简二次根式,再把同类二次根式分别合并。

在根式的加减法中,同类根式要合并。一般地,几个根式总可以化成同次根式,但不一定能化成同类根式。

在根式运算中应注意以下几点:

1、根式运算是在运算有意义的条件下进行的,一般常省掉运算过程中的条件不写。

2、根式运算的结果若仍含有根式,一般要化为最简根式。

3、根式的乘、除、乘方、开方运算可化为有理指数幂进行运算。

4、√a²=|a|,在限制a是非负数时,方有√a²=a。

参考资料来源:百度百科--根号

参考资料来源:百度百科--根式乘除法法则

以上就是高中根式的运算的全部内容,根式运算法则:同次根式相乘,把根式前面的系数相乘,作为积的系数;把被开方数相乘,作为被开方数,根指数不变,然后再化成最简根式。根式运算法则相乘时:两个有平方根的数相乘等于根号下两数的乘积。

猜你喜欢