高中数学对数的运算?高中数学对数公式大全如下:1、对数运算法则:a^log(a)N=N(a>0且a不等于1))log(a)^n=n(a>0且a不等于1)log(a)MN=log(a)M+log(a)N(a>0月a不等于1)。log(a)M/N=log(a)M-log(a)N(a>0月a不等于1)。log(a)^M^n=nlog(a)^M(a>0月a不等于1)。那么,高中数学对数的运算?一起来了解一下吧。
ln1=0;ln2=0.693147;ln3=1.098612;ln4=1.386294;ln5=1.609437;ln6=1.791759 ln7=1.945910;ln8=2.079441;ln9=2.197225;ln10=2.302585。
自然对数是以常数e为底数的对数,记作lnN(N>0)。
对数和指数的转换
在高中的数学课程中,指数和对数既是必修内容,也是重点内容。除了要掌握指数的基本公式之外,还要掌握对数的基本公式,另外还要掌握对数和指数的互换公式,这样才可以快速而准确的进行对数和指数的运算。
指数与对数的转换公式是a^y=x→y=log(a)(x)[公式表示y=log以a为底x的对数,其中a是底数,x是真数。另外a大于0,a不等于1,x大于0]。在实际计算的过程中,指数和对数的转换,可以利用指数或者是对数函数的单调性,这样就可以比较出来对数式或者是指数式的大小了。
(1)x=[lg2]/lg(√2-1)(2)4.(3)-1,(4)2.(5)4.(6)(ab+3)/(ab+a+1)
一、对数的运算法则:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
二、指数的运算法则:
1、[a^m]×[a^n]=a^(m+n)
2、[a^m]÷[a^n]=a^(m-n)
3、[a^m]^n=a^(mn)
4、[ab]^m=(a^m)×(a^m)
记忆口决:
有理数的指数幂,运算法则要记住。
指数加减底不变,同底数幂相乘除。
指数相乘底不变,幂的乘方要清楚。
积商乘方原指数,换底乘方再乘除。
非零数的零次幂,常值为 1不糊涂。
负整数的指数幂,指数转正求倒数。
看到分数指数幂,想到底数必非负。
乘方指数是分子,根指数要当分母。
扩展资料
指数的相关历史:
1607 年,利玛窦和徐光启合译欧几里得的 《几何原本》,在译本中徐光启重新使用了幂字,并有注解:“自乘之数曰幂。”这是第一次给幂这个概念下定义。
至十七世纪,具有“现代”意义的指数符号才出现。最初的,只是表示未知数之次数,但并无出现未知量符号。
对数的运算法则:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指数的运算法则:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
扩展资料
相关定义
如果
即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作
其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。
1、特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lg。
2、称以无理数e(e=2.71828...)为底的对数称为自然对数(natural logarithm),并记为ln。
要使用换底公式可以进行计算。
换底公式是高中数学常用对数运算公式,可将多异底对数式转化为同底对数式,结合其他的对数运算公式一起使用。计算中常常会减少计算的难度,更迅速的解决高中范围的对数运算。
其原理就是指数函数的换底,把底为普通常数或变量的指数函数或幂指函数统统都变形为以e为底的复合函数形式。
具体步骤如下:
1、首先,拿出卡西欧计算题,按on键开机。
2、第二步在输入栏输入,“log”“4”“÷”“log”“2”。
3、最后一步,按下等于号就能出现结果了。
以上就是高中数学对数的运算的全部内容,高中数学log的公式:log(a)(MN)=log(a)(M)+log(a)(N)。标准语言表达式 是若a=b(a>0且a≠1) 则n=logab 若a^n=b(a>0且a≠1)则n=log(a^b)。"化乘除为加减",从而达到简化计算的思路的方法,不正是对数运算的明显特征。其中纳皮尔的这种计算方法。