高中数学圆与圆的位置关系?设两圆C₁,C₂都和坐标轴相切,且都过点(4,1),则两圆心的距离丨C₁C₂丨=?图像大致为?解:因为园与两个坐标轴都相切,所以园心到两个坐标轴的距离相等,故可设园心坐标为(m,m);园过点(4,1),因此有等式m²=(m-4)²+(m-1)²,那么,高中数学圆与圆的位置关系?一起来了解一下吧。
两圆C1,C2都和坐标轴相切,且都过点(4,1)
则也都过(1,4)
设半径为r1,r2
则有(x-r1)^2+(y-r1)^2=(r1)^2 (x-r2)^2+(y-r2)^2=(r2)^2
将(4,1)代入圆方程得
r1=5-2√2r2=5+2√2
丨C1C2丨= (r2-r1)√2=8
自己画图吧很好画的
高中数学中的平面解析几何是高考中的关键章节之一,涵盖了直线方程、直线与直线的位置关系、圆的标准方程、直线与圆的位置关系、圆与圆的位置关系、椭圆的标准方程及其几何性质、双曲线的标准方程及其几何性质、抛物线的标准方程及其几何性质等内容。
直线方程的学习是基础,包括点斜式、斜截式、两点式和一般式,这些方程形式帮助我们理解直线的倾斜角度和截距。直线与直线的位置关系包括平行、垂直和相交三种情况,通过这些关系的探讨,能够进一步深化对直线方程的理解。
圆的标准方程是(x-a)2+(y-b)2=r2,其中(a,b)为圆心坐标,r为半径。直线与圆的位置关系分为相离、相切和相交三种情形,通过分析直线与圆心的距离与半径的关系,可以判断直线与圆的具体位置关系。
椭圆、双曲线和抛物线的标准方程分别是:x2/a2+y2/b2=1,x2/a2-y2/b2=1和y2=2px,它们各自拥有独特的几何性质,如焦点、准线和离心率等。掌握这些性质有助于解决与椭圆、双曲线和抛物线相关的问题。
平面解析几何在高考中的重要性不言而喻,通常占17分以上,掌握上述内容对于应对高考至关重要。希望这些信息对你的学习有所帮助。

1.高二数学重点知识点总结
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
2、圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形.
(3)求圆方程的方法:
一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.
3、高中数学必修二知识点总结:直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
设圆,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含;当时,为同心圆.
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
5、空间点、直线、平面的位置关系
公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.
应用:判断直线是否在平面内
用符号语言表示公理1:
公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a.
2.高二数学重点知识点总结
一、随机事件
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

高中数学必备知识点:2.2.2 圆的一般方程
圆的一般方程是描述平面上所有满足与给定点(圆心)距离相等的点的集合的方程。其标准形式为:
x² + y² + Dx + Ey + F = 0
其中,D、E、F为常数,且D² + E² - 4F > 0,以保证方程表示一个实际的圆。
一、圆的一般方程的几何意义
圆心坐标:对于圆的一般方程x² + y² + Dx + Ey + F = 0,其圆心坐标为$(-frac{D}{2}, -frac{E}{2})$。
半径长度:圆的半径r可以通过圆心坐标和方程中的常数计算得出,公式为$r = frac{1}{2}sqrt{D^2 + E^2 - 4F}$。
二、圆的一般方程与标准方程的转换
圆的标准方程为$(x - a)^2 + (y - b)^2 = r^2$,其中(a, b)为圆心坐标,r为半径。通过代数变换,可以将圆的一般方程转换为标准方程,从而更直观地看出圆心的位置和半径的长度。
设两圆C₁,C₂都和坐标轴相切,且都过点(4,1),则两圆心的距离丨C₁C₂丨=?图像大致为?
解:因为园与两个坐标轴都相切,所以园心到两个坐标轴的距离相等,故可设园心坐标为(m,m);
园过点(4,1),因此有等式m²=(m-4)²+(m-1)²,展开化简得m²-10m+17=0;于是得:
m=(10±√32)/2=5±2√2;即得C₁(5-2√2,5-2√2);C₂(5+2√2,5+2√2);
故丨C₁C₂丨=√{2[(5+2√2)-(5-2√2)]²=√64=8.
以上就是高中数学圆与圆的位置关系的全部内容,圆的标准方程是(x-a)2+(y-b)2=r2,其中(a,b)为圆心坐标,r为半径。直线与圆的位置关系分为相离、相切和相交三种情形,通过分析直线与圆心的距离与半径的关系,可以判断直线与圆的具体位置关系。椭圆、双曲线和抛物线的标准方程分别是:x2/a2+y2/b2=1,x2/a2-y2/b2=1和y2=2px,内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。