高中必修一数学题目?一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U=R,A={x|x>0},B={x|x>1},则A∩?UB=()A{x|0≤x0,且a≠1)的反函数,且f(2)=1,那么,高中必修一数学题目?一起来了解一下吧。
由题意可得:
一个元素若属于A1则不属于A2,反之亦然
则A1和A2为互斥子集组。
由于A1、A2为集合A的非空子集,则分类讨论:
1、A1只有一个元素时,
譬如A1={1}
则A2为集合{2,3,4}的非空子集则可
共有2^3-1=7种情况
由于A1可以为{1}、{2}、{3}、{4}即C(4,1)=4种情况
则有4×7=28种
2、A1有两个元素时
譬如A1={1,2}
则A2为集合{3,4}的非空子集则可
共有2^2-1=3种情况
由于A1可以为C(4,2)=6种情况
则有6×3=18种
3、A1有三个元素时
譬如A1={1,2,3}
则A2为集合{4}的非空子集则可
共有2^1-1=1种情况
由于A1可以为C(4,3)=4种情况
则有4×1=4种
因此共计28+18+4=50种互斥子集组
f(1)-f(0)=0
f(2)-f(1)=2
f(3)-f(2)=4
........
f(x)-f(x-1)=2(x-1)
各式相加得:
f(x)-f(0)=0+2+4+......2(x-1)
f(x)-1=2(1+2+3+.....(x-1))=(x-1+1)(x-1)=x^2-x+1
集合的学习在高一数学课程中占据十分重要的地位,同学通过试题练习能够加强理解知识点,下面是我给大家带来的高一数学必修一集合试题,希望对你有帮助。
高一数学必修一集合试题
一、选择题
1.(20 13年高考四川卷)设集合A={1,2,3},集合B={ -2,2},则A∩B等于(B)
(A) (B){2}
(C){-2,2} (D){-2,1,2,3}
解析:A∩B={2},故选B.
2.若全集U={-1,0,1,2},P={x∈Z|x2<2},则∁UP等于(A)
(A){2} (B){0,2}
(C){-1,2} (D){-1,0,2}
解析:依题意得集合P={-1,0,1},
故∁UP={2}.故选A.
3.已知集合A={x|x>1},则(∁RA)∩N的子集有(C)
(A)1个 (B)2个 (C)4个 (D)8个
解析:由题意可得∁RA={x|x≤1},
所以(∁RA)∩N={0,1},其子集有4个,故选C.
4.(2013年高考全国新课标卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-
(A)A∩B= (B)A∪B=R
(C)B⊆A (D)A⊆B
解析:A={x|x>2或x<0},
∴A∪B=R,故选B.
5.已知集合M={x ≥0,x∈R},N={y|y=3x2+1,x∈R},则M∩N等于(C)
(A) (B){x|x≥1}
(C){x|x>1} (D){x|x≥1或x<0}
解析:M={x|x≤0或x>1},N={y|y≥1}={x|x≥1}.
∴M∩N={x|x>1},故选C.
6.设集合A={x + =1},集合B={y - =1},则A∩B等于(C)
(A)[-2,- ] (B)[ ,2]
(C)[-2,- ]∪[ ,2] (D)[-2,2]
解析:集合A表示椭圆上的点的横坐标的取值范围
A=[-2,2],
集合B表示双曲线上的点的纵坐标的取值范围
B=(-∞,- ]∪[ ,+∞),
所以A∩B=[-2,- ]∪[ ,2].故选C.
二、填空题
7.(2012 年高考上海卷)若集合A={x|2x+1>0},
B={x||x-1|<2},则A∩B=.
解析:A={x x>- },B={x|-1
所以A∩B={x -
答案:{x -
8.已知集合A={ x <0},且2∈A,3∉A,则实数a的取值范围是.
解析:因为2∈A,所以 <0,
即(2a-1)(a- 2)>0,
解得a>2或a< .①
若3∈A,则 <0,
即( 3a-1)(a-3)>0,
解得a>3或a< ,
所以3∉A时, ≤a≤3,②
①②取交集得实数a的取值范围是 ∪(2,3].
答案: ∪(2,3]
9.(2013济南3月模拟)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值组成的集合为.
解析:若a=0时,B= ,满足B⊆A,
若a≠0,B=(- ),
∵B⊆A,
∴- =-1或- =1,
∴a=1或a=-1.
所以a=0或a=1或a=-1组成的集合为{-1,0,1}.
答案:{-1,0,1}
10.已知集合A={x|x2+ x+1=0},若A∩R= ,则实数m的取值范围是.
解析:∵A∩R= ,∴A= ,
∴Δ=( )2-4<0,∴0≤m<4.
答案:[0,4)
11.已知集合A={x|x2-2x-3>0},B={x|x2+ax+b≤0},若A∪B=R,A∩B={x| 3
解析:A={x|x<-1或x>3},
∵A∪B=R,A∩B={x|3
∴B={x|-1≤x≤4},
即方程x2+ax+b=0的两根为x1=-1,x2=4.
∴a=-3,b=-4,
∴a+b=-7.
答案:-7
三、解答题
12.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.
(1)9∈(A∩B);
(2){9}=A∩B.
解:(1) ∵9∈(A∩B),
∴2a-1= 9或a2=9,
∴a=5或a=3或a=-3.
当a=5时,A={-4,9,25},B={0,-4,9};
当a=3时,a-5=1-a=-2,不满足集合元素的互异性;
当a=-3时,A={-4,-7,9},B={-8,4,9},
所以a=5或a=-3.
(2)由(1)可知,当a=5时,A∩B={-4,9},不合题意,
当a=-3时,A∩B={9}.
所以a=- 3.
13.已知集合A={x|x2-2x-3≤0};B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.
解:由已知得A={x|-1≤x≤3},
B={x|m-2≤x≤m+2}.
(1)∵A∩B=[0,3],
∴
∴m=2.
(2)∁RB={x|xm+2},
∵A⊆∁RB,
∴m-2>3或m+2<-1,
即m>5或m<-3.
14.设U=R,集合A={x |x2+3x+2=0},B={x|x2+(m+1)x+m=0},若
(∁UA)∩B= ,求m的值.
解:A={x|x=-1或x=-2},
∁UA={x|x≠-1且x≠-2}.
方程x2+(m+1)x+m=0的根是x1=-1,x2=-m,
当-m=-1,即m=1时,B={-1},
此时(∁UA)∩B= .
当-m≠-1,即m≠1时,B={-1,-m},
∵(∁UA)∩B= ,
∴-m=-2,即m=2.
所以m=1或m=2.
高一数学必修一集合知识点
集合的三个特性
(1)无序性
指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
第一题:这种题目称为复合函数的单调性问题。2X-X方看做是G(X)=2X-X方。所谓一元函数单调性通俗的说就是当X增大时,f(x)是增大还是减小,所以,先求出G(X)在定义域(一定要记得求出定义域,本题定义域为R)上的单调区间,比如,此题G(X)在(-无穷,1】上,G(X)为单调递增函数。由于已知F(X)为单调单调减,所以,当X在(-无穷,1】时,X增大导致G(X)减小,而G(X)减小则导致F(X)的增大。即是说,G(x)充当了一个桥梁的过程,也就是说当X在(-无穷,1】时X增大最终一定导致F(x)增大,即单调递增。单调递减区间请楼主自己分析。
这类题目的解题思路基本就是看穿复合函数G(x)的桥梁作用。本质问题还是看随X增大,如何通过一些桥梁来导致F(x)的变化。由于为了方便楼主理解,特地用通俗语言解释。希望楼主能举一反三。自己体会数学中的方法和思路。
第二题:先依旧用通俗语言给楼主理清思路,看到这个式子不知道楼主能否想到初中学到的一次函数:
F(x)=-2/3X这个函数模型。这个函数符合第二题中的所有要求,可以说是第二题题目中的一个特例,但是先提一句,决不能认为F(x)就是-2/3X,一般和特殊的关系千万不能混淆。
根据题目中给出的条件,我们来详细解释并计算集合A={1, 2, 3, 4}的不同互斥子集组的个数。
首先,我们需要明确题目中的定义和条件:
- A1和A2是集合A的子集。
- 如果一个元素a属于A,那么它也属于A2。
- 如果一个元素a属于A2,那么它也属于A。
根据题目中的条件,我们可以观察到以下事实:
- 如果A2=A,那么满足条件(1)的要求,因为A中的元素都属于A2。
- 如果A2=A,那么满足条件(2)的要求,因为A2中的元素都属于A。
因此,集合A的互斥子集组只有一个,即(A1, A2) = (A, A)。
需要注意的是,这里并没有要求A1和A2不相等。因此,我们只有一种互斥子集组。
综上所述,集合A={1, 2, 3, 4}的不同互斥子集组的个数是1个。
以上就是高中必修一数学题目的全部内容,第一题:这种题目称为复合函数的单调性问题。2X-X方看做是G(X)=2X-X方。所谓一元函数单调性通俗的说就是当X增大时,f(x)是增大还是减小,所以,先求出G(X)在定义域(一定要记得求出定义域。