高中三角函数专题训练?解:(1)y=sinxcosx+sinx+cosx 令t= sinx+cosx=√2sin(x+∏/4),∴t∈[-√2, √2]则,t^2=(sinx+cosx)^2=1+2sinxcosx 则,sinxcosx=(t^2-1)/2 ∴y=t+(t^2-1)/2=(1/2)t^2+t-(1/2)令y=g(t)= (1/2)t^2+t-(1/2), t∈[-√2, √2]对称轴是t=-1,那么,高中三角函数专题训练?一起来了解一下吧。
(1)mn=sin(A-B)+2sinBsin(π/2-A)=sinAcosB-sinBcosA+2sinBcosA=sinAcosB+sinBcosA=sin(A+B)=sin2C;
∴A+B=2C;
∵A+B+C=π;
∴C=60°
(2)sinA+sinB=(3/2)sinC=3√3/4;
∵a/sinA=b/sinB=c/sinC;
∴sinA=asinC/c;sinB=bsinC/c;
∴(asinC/c+bsinC/c)=(3/2)sinC;
∴a+b=3c/2;
∵SΔABC=(1/2)×sinC×a×b=(√3/4)×ab=√3;
∴ab=4;
∵cosC=(a²+b²-c²)/(2ab)=(9c²/4-8-c²)/(8)=1/2;
∴5c²/4-8=4;
5c²/4=12;
c²=48/5;
∴c=4√3/√5=4√15/5;
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
祝学习进步
题目这么多,打字很工整,很是佩服。不过有打字的时间都差不多可以做出来了。
这么多道题,给80分,太划不来了。
mn=sin(A-B)×1+sin(π/2-A)×2sinB
=sinAcosB-cosAsinB+2cosAsinB
=sinAcosB+cosAsinB
=sin(A+B)
=sinC
=-sin2C
那么sinC=-2sinCcosC
cosC=-1/2
C=120°
(1)mn=sin(A-B)+2sin(π/2-A) *sinB= sinAcosB-cosAsinB+2cosA *sinB
= sinAcosB+cosA *sinB=sin(A+B)=sin(180°-C)=sinC =-sin2C=-2sinC*cosC
则cosC=-1/2,
C=120°
(2)sinA+sinB=3/2sinC,sinA/ sinC +sinB/ sinC =a/c+b/c=3/2,a+b=3/2*c,
S△ABC=1/2*ab*sinC=1/2*ab*√3/2=√3,则ab=4
c^2=a^2+b^2-2ab*cosC= a^2+b^2-ab=(a+b)^2-3ab=9/4*c^2-12,
5/4*c^2=12,
c^2=48/5,
c=4√3/√5
高中三角函数题型及解题方法如下:
一、见“给角求值”问题,运用“新兴”诱导公式 一步到位转换到区间(-90o,90o)的公式。
1.sin(kπ+α)=(-1)ksinα(k∈Z)。
2. cos(kπ+α)=(-1)kcosα(k∈Z)。
3. tan(kπ+α)=(-1)ktanα(k∈Z)。
4. cot(kπ+α)=(-1)kcotα(k∈Z)。
点击查看:高中数学反三角函数公式总结。
二、见“sinα±cosα”问题,运用三角“八卦图”。
1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方)。
2. sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方)。
3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内。
4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内。
三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。
四、见“切割”问题,转换成“弦”的问题。
五、“见齐思弦”=>“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α。
以上就是高中三角函数专题训练的全部内容,3.1.在直径为1的圆O中,作一关于圆心对称、邻边相互垂直的十字形其中,y>x>0,将十字星的面积表示为θ的函数。4.已知函数。设ω>0为常数,若y=f(ωx)在区间上是增函数,求ω的取值范围。