高中数与式的运算?高中必备初中知识技能汇总第一讲 数与式的运算在初中,我们已学习了实数,知道字母可以表示数用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式(多项式、单项式)、分式、根式.它们具有实数的属性,可以进行运算.在多项式的乘法运算中,那么,高中数与式的运算?一起来了解一下吧。
近几年来,高考特别重视考查学生的运算能力,学生运算能力的强弱直接关系到高考的成败。那么,如何培养高中生的运算能力呢?本人结合教学实践,从以下几个方面谈谈自己的粗浅看法。一、上好高中第一课,做好初高中的过渡 第一课就先要让学生充分认识到计算的意义和重要性①计算是学习数学的基石,高中生掌握了计算,就会觉得高中的数学不是很难学。在教学实践中我发现了这样一个现象:许多学生虽然掌握了计算方法,却往往还会计算错误,计算的准确率很低,尤其是一些计算粗心的学生经常在考试的时候出现一些别人都不错而唯独他错的情况,这就严重地阻碍了学生数学成绩的提高。为此,必须切实提高学生计算的准确率。 ②高中教学中的许多内容都涉及数与式的运算,如果学生的计算比较差,就很难学好高中数学,严重影响高中数学成绩。因此,要告诉学生计算在数学学习中的重要性,让学生明白做好计算是学好数学的基础,学好计算对于我们的生活有很重要的作用。 二、课堂上重视培养学生运算的兴趣 计算是枯燥乏味的,要培养学生在计算方面的兴趣,需要教师的精心策划,采用多种计算形式,让学生积极参与亲身体验,从而提高计算能力。 常用的方法有以下三种:①以中外数学家的典型事例或与课堂教学内容有关的小故事激发兴趣。
初中主要学二次方程的解法:还有代数式,多项式的运算;二次函数,二次根式;一次函数;
平面几何:三角形的相似与全等;多边形及其内角和定理;园及其性质
高中主要学函数:指数函数,对数函数,幂函数;三角函数;数列;不等式;平面向量;算法初步;抽样调查,统计与概率;排列组合与二项式定理;导数及初步应用;极限;
立体几何:解析几何;复数;
现有初高中数学教材存在以下“脱节”:
1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;
2、立方和与差的公式在初中已经删去不讲,而高中还在使用;
3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;
4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;
5初中教材对二次函数的要求较低,学生处于了解水平。而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;
6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;
7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;
8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;
9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;
10、圆中四点共圆的性质和判定初中没有学习。
初中和高中都是分为代数和几何两部分
一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。
一、引言
数学知识体系的综合性特点要求学生必须具备一定的基础知识和基本技能,其思维品质要有一定的广度和深度,这样才能在后续的数学学习中顺势而为,向上快速发展思维。从初中到高中,由于九年制义务教育教材与现行高中教材有一定的脱节现象,加之高中教学内容突然增多,高中一年级整体教学内容远超过初中三年的教学内容。另外高中的数学语言更抽象,要求学生思维方式发生质变,思维方法向理性层次迁移。
此外,学生学习环境变化、基础知识的差异、学习方法的不同步等原因,致使相当一部分学生陷入困境,顿感前途渺茫,认为数学深奥、高不可攀、不可接近,久而久之,学生便产生了厌学心理。为了使每个学生很快适应高中阶段的数学学习,培养他们的抽象思维能力和逻辑推理能力,初高中数学衔接教学问题值得数学老师研究探索。因为这将有助于初中高中教材脱节现象早日得到解决,有助于解决初中、高中数学教师在教育观念、目的和教学方法等方面统一认识,有助于减少学生的年龄、心理、智力、习惯等个性特征对学习带来的负面影响,因此有着广泛的现实意义。
二、初高中数学衔接存在的主要问题
(一)从学习态度和方法上看
初中生依赖性较强,习惯于教师传授知识。但是,到高中,由于内容多时间少,教师不可能把知识应用形式和题型讲全讲细,只能选讲一些具有典型性的题目,以落实“三基”培养能力。
以上就是高中数与式的运算的全部内容,如果有全部答案更好,是初高中衔接教材的,数与式的运算,因式分解(分AB组的)一元二次方程根与系数的关系,二次函数的最值问题,二次函数的的图像与性质,分式方程 这两道题求过程。