高中数学基本不等式公式?√[(a+b)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。平方平均数≥算术平均数≥几何平均数≥调和平均数。一、基本不等式 基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。二、基本不等式两大技巧 “1”的妙用。那么,高中数学基本不等式公式?一起来了解一下吧。
高中6个基本不等式的公式有a^2+b^2≧2ab、√ab≦(a+b)/2、b/a+a/b≧2、(a+b+c)/3≧³√abc、a^3+b^3+c^3≧3abc、柯西不等式。
1、基本不等式a^2+b^2≧2ab:
针对任意的实数a,b都成立,当且仅当a=b时,等号成立。
证明的过程:因为(a-b)^2≧0,展开的a^2+b^2-2ab≧0,将2ab右移就得到了公式a^2+b^2≧2ab。
它的几何意义就是一个正方形的面积大于等于这个正方形内四个全等的直角三角形的面积和。
2、基本不等式√ab≦(a+b)/2:
这个不等式需a,b均大于0,等式才成立,当且仅当a=b时等号成立。
证明过程:要证(a+b)/2≧√ab,只证a+b≧2√ab,只要能证(√a-√b)^2≧0,明显(√a-√b)^2≧0是成立的。
它的几何意义是圆内的直径大于被弦截后得到直径的2个部分的乘积的二倍。
3、b/a+a/b≧2:
这个不等式的要求ab>0,当且仅当a=b时等号成立,其实就是常说的说a,b可以同时为正数,也可同时为负数。
证明的过程:b/a+a/b(a^2+b^2)/ab≧2,只要能证a^2+b^2≧2ab就可以。
高中4个基本不等式链:
√[(a+b)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。
平方平均数≥算术平均数≥几何平均数≥调和平均数。
一、基本不等式
基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
二、基本不等式两大技巧
“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。
调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。
三、基本不等式中常用公式
(1)√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)
(2)√(ab)≤(a+b)/2。
高中4个基本不等式的公式如下:
算术平均数与几何平均数的不等式:
公式:$sqrt{frac{a^{2} + b^{2}}{2}} geq frac{a + b}{2} geq sqrt{ab}$
解释:两个正实数的算术平均数大于或等于它们的几何平均数,同时算术平均数也被它们的平方和的平均数的平方根所限制。
调和平均数与算术平均数的不等式:
公式:$frac{a + b}{2} geq frac{2}{frac{1}{a} + frac{1}{b}}$
解释:两个正实数的算术平均数大于或等于它们的调和平均数。
三个正数的算术平均数与几何平均数的不等式:
公式:如果a、b、c都是正数,那么$a + b + c geq 3sqrt[3]{abc}$,当且仅当a=b=c时等号成立。
解释:三个正实数的算术平均数大于或等于它们的几何平均数。
高中阶段的不等式公式:
一、两个数的不等式公式
1、若a-b>0,则a>b(作差)。
2、若a>b,则a±c>b±c。
3、若a+b>c,则a>b-c(移项)。
4、若a>b,则c>d(不等号同向相加成立,两个大的加起来,肯定比两个小的加起来大)。
5、若a>b>0,c>d>0则ac>bd(两个大正数相乘肯定比两个小正数的相乘大)。
6、若a>b>0,则an>bn(n∈N,n>1)。
二、基本不等式(也叫均值不等式)
思想:反应的是算术平均值(a+b)/2和几何平均值的大小关系,这里a,b都是非负数。
1、(a+b)/2≥ab(算术平均值不小于几何平均值)。
2、a2+b2≥2ab(由1两边平方变化而来)。
3、ab≤(a2+b2)/2≤(a+b)2 /2(由2扩展而来)。
三、绝对值不等式公式(a,b看成向量,“||”看成向量的模也适用)
思想:三角形两边之差小于第三边,两边之和大于第三边。
1、||a|-|b| |≤|a-b|≤|a|+|b|
2、||a|-|b| |≤|a+b|≤|a|+|b|
四、二次函数不等式
f(x)=ax2+bx +c(a≠0)
思想:函数图像是开口向上(a>0)或开口向下(a<0)的曲线,令函数值为0,解出f(x)的零点,符号看函数值处在纵坐标的正半轴还是负半轴。
数学不等式基本公式高中如下:
高中数学不等式公式有基本不等式、绝对值不等式公式、柯西不等式、四边形不等式。一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。
1、基本不等式:√(ab)≤(a+b)/2,那么可以变为a^2-2ab+b^2≥0,a^2+b^2≥2ab,ab≤a与b的平均数的平方。
2、绝对值不等式公式:||a|-|b||≤|a-b|≤|a|+|b|,||a|-|b||≤|a+b|≤|a|+|b|。
3、柯西不等式:设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2)当且仅当ai=λbi(λ为常数,i=1,2.3,…n)时取等号。
4、四边形不等式:如果对于任意的a1≤a2
原理:
1、不等式F(x)
2、如果是不等式F(x) 以上就是高中数学基本不等式公式的全部内容,高中4个基本不等式链:√[(a²+b²)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。基本不等式 基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。不等式定理口诀 解不等式的途径,利用函数的性质。内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。