高中函数试题及答案,高中数学考试试题

  • 高中数学
  • 2024-03-06

高中函数试题及答案?1.设U=R,A={x|x0},B={x|x1},则A?UB=( )A{x|01} B.{x|0 C.{x|x0} D.{x|x1} 【解析】 ?UB={x|x1},A?UB={x|0 【答案】 B 2.若函数y=f(x)是函数y=ax(a0,且a1)的反函数,那么,高中函数试题及答案?一起来了解一下吧。

高中函数经典题型及答案

1.cosA=7/25

所以cosA/2^2-sinA/2^2=7/25

2cosA/2^2=32/25

cosA/2^2=16/25

cosA/2=4/5=cosB

所以B=37°

2.sinC/AD=sinADC/AC

所以sin(180°-A-B)/AD=sinA/AC

sinA*cosB+sinB*cosA/AD=sinA/AC

(cosB+sinB*cosA/sinA)/AD=AC

AC=4/5+(3/5)*(7/25)/(根号下1-7^2/25^2)=23/40

希望你能满意,谢谢

生活中与函数有关的例子

已知实数 ,求函数 的零点。16.(本题满分12分)已知函数 .(Ⅰ)求 的定义域;(Ⅱ)证实:函数 在定义域内单调递增.17.(本题满分14分)某商品每件成本9元,售价为30元,每星期卖出432件. 假如降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值 (单位:元, )的平方成正比.已知商品单价降低2元时,一星期多卖出24件.(Ⅰ)将一个星期的商品销售利润表示成 的函数;(Ⅱ)如何定价才能使一个星期的商品销售利润最大?18.(本题满分14分)若函数y= x3- ax2 (a-1)x 1在区间(1,4)内为减函数,在区间(6, ∞)内为增函数,试求实数a的取值范围.19.(本题满分14分)两个二次函数 与 的图象有唯一的公共点 ,(Ⅰ)求 的值;(Ⅱ)设 ,若 在 上是单调函数,求 的范围,并指出是单调递增函数,还是单调递减函数。20.(本题满分14分)设函数y= 是定义在R上的函数,并且满足下面三个条件: ①对任意正数x、y,都有; ②当x>1时, <0; ③ .(Ⅰ)求 的值;(Ⅱ)证实 上是减函数;(Ⅲ)假如不等式 成立,求x的取值范围。 15.(本题满分12分)解: , 可能等于1或 或 。

语文会考试题及答案

1. 二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1 求f(X)

解析:∵二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1

f(x+1)=f(x)+2x

f(1)=f(0)=1

f(2)=f(1)+2?1=3

f(3)=f(2)+2?2=7

f(4)=f(3)+2?3=13

f(n)=1+2(1+2+3+…+n-1)=n(n-1)+1

∴F(x)=x^2-x+1

2.讨论f(x)=ax/(x2-1)在(-1,1)的单调性

解析:∵f(x)=ax/(x2-1),其定义域为x≠-1,x≠1

f’(x)=-a(1+x^2)/(x2-1)^2

∵(1+x^2)/(x2-1)^2>0,∴f’(x)的符号取决于a

∴当a>0时,函数f(x)在(-1,1)的单调减;当a<0时,函数f(x)在(-1,1)的单调增;

3. 若函数f(x)满足f(x)-2f(-x)=1/x+x(x≠0)

(1)解析:∵函数f(x)满足f(x)-2f(-x)=1/x+x(x≠0)(a)

∴f(-x)-2f(x)=-1/x-x (b)

(a)+2*(b)得-3f(x)=-x-1/x==>f(x)=(x^2+1)/(3x)

(2)解析:f’(x)=(3x^2-3)/(3x)^2

f’(3)>0, f’(5)>0,∴f(x)在区间[3,5]上单调增

∴f(x)在x∈[3,5]的最大值为f(5)=26/15,最小值为f(3)=10/9

高中函数怎么学最简单方法

函数的概念是函数整章的核心概念,学会用函数的观点和方法解决数学问题,是高中数学主要的学习任务之一。下面是我给大家带来的高一数学必修1函数的概念考试题及答案解析,希望对你有帮助。

高一数学函数的概念考试题及答案解析

1.下列说法中正确的为()

A.y=f(x)与y=f(t)表示同一个函数

B.y=f(x)与y=f(x+1)不可能是同一函数

C.f(x)=1与f(x)=x0表示同一函数

D.定义域和值域都相同的两个函数是同一个函数

解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.

2.下列函数完全相同的是()

A.f(x)=|x|,g(x)=(x)2

B.f(x)=|x|,g(x)=x2

C.f(x)=|x|,g(x)=x2x

D.f(x)=x2-9x-3,g(x)=x+3

解析:选B.A、C、D的定义域均不同.

3.函数y=1-x+x的定义域是()

A.{x|x≤1}B.{x|x≥0}

C.{x|x≥1或x≤0} D.{x|0≤x≤1}

解析:选D.由1-x≥0x≥0,得0≤x≤1.

4.图中(1)(2)(3)(4)四个图象各表示两个变量x,y的对应关系,其中表示y是x的函数关系的有________.

解析:由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,对于本题而言,当-1≤a≤1时,直线x=a与函数的图象仅有一个交点,当a>1或a<-1时,直线x=a与函数的图象没有交点.从而表示y是x的函数关系的有(2)(3).

答案:(2)(3)

1.函数y=1x的定义域是()

A.R B.{0}

C.{x|x∈R,且x≠0} D.{x|x≠1}

解析:选C.要使1x有意义,必有x≠0,即y=1x的定义域为{x|x∈R,且x≠0}.

2.下列式子中不能表示函数y=f(x)的是()

A.x=y2+1 B.y=2x2+1

C.x-2y=6 D.x=y

解析:选A.一个x对应的y值不唯一.

3.下列说法正确的是()

A.函数值域中每一个数在定义域中一定只有一个数与之对应

B.函数的定义域和值域可以是空集

C.函数的定义域和值域一定是数集

D.函数的定义域和值域确定后,函数的对应关系也就确定了

解析:选C.根据从集合A到集合B函数的定义可知,强调A中元素的任意性和B中对应元素的唯一性,所以A中的多个元素可以对应B中的同一个元素,从而选项A错误;同样由函数定义可知,A、B集合都是非空数集,故选项B错误;选项C正确;对于选项D,可以举例说明,如定义域、值域均为A={0,1}的函数,对应关系可以是x→x,x∈A,可以是x→x,x∈A,还可以是x→x2,x∈A.

4.下列集合A到集合B的对应f是函数的是()

A.A={-1,0,1},B={0,1},f:A中的数平方

B.A={0,1},B={-1,0,1},f:A中的数开方

C.A=Z,B=Q,f:A中的数取倒数

D.A=R,B={正实数},f:A中的数取绝对值

解析:选A.按照函数定义,选项B中集合A中的元素1对应集合B中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C中的元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D中,集合A中的元素0在集合B中没有元素与其对应,也不符合函数定义,只有选项A符合函数定义.

5.下列各组函数表示相等函数的是()

A.y=x2-3x-3与y=x+3(x≠3)

B.y=x2-1与y=x-1

C.y=x0(x≠0)与y=1(x≠0)

D.y=2x+1,x∈Z与y=2x-1,x∈Z

解析:选C.A、B与D对应法则都不同.

6.设f:x→x2是集合A到集合B的函数,如果B={1,2},则A∩B一定是()

A.∅ B.∅或{1}

C.{1} D.∅或{2}

解析:选B.由f:x→x2是集合A到集合B的函数,如果B={1,2},则A={-1,1,-2,2}或A={-1,1,-2}或A={-1,1,2}或A={-1,2,-2}或A={1,-2,2}或A={-1,-2}或A={-1,2}或A={1,2}或A={1,-2}.所以A∩B=∅或{1}.

7.若[a,3a-1]为一确定区间,则a的取值范围是________.

解析:由题意3a-1>a,则a>12.

答案:(12,+∞)

8.函数y=x+103-2x的定义域是________.

解析:要使函数有意义,

需满足x+1≠03-2x>0,即x<32且x≠-1.

答案:(-∞,-1)∪(-1,32)

9.函数y=x2-2的定义域是{-1,0,1,2},则其值域是________.

解析:当x取-1,0,1,2时,

y=-1,-2,-1,2,

故函数值域为{-1,-2,2}.

答案:{-1,-2,2}

10.求下列函数的定义域:

(1)y=-x2x2-3x-2;(2)y=34x+83x-2.

解:(1)要使y=-x2x2-3x-2有意义,则必须

-x≥0,2x2-3x-2≠0,解得x≤0且x≠-12,

故所求函数的定义域为{x|x≤0,且x≠-12}.

(2)要使y=34x+83x-2有意义,则必须3x-2>0,即x>23, 故所求函数的定义域为{x|x>23}.

11.已知f(x)=11+x(x∈R且x≠-1),g(x)=x2+2(x∈R).

(1)求f(2),g(2)的值;

(2)求f(g(2))的值.

解:(1)∵f(x)=11+x,

∴f(2)=11+2=13,

又∵g(x)=x2+2,

∴g(2)=22+2=6.

(2)由(1)知g(2)=6,

∴f(g(2))=f(6)=11+6=17.

12.已知函数y=ax+1(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.

解:函数y=ax+1(a<0且a为常数).

∵ax+1≥0,a<0,∴x≤-1a,

即函数的定义域为(-∞,-1a].

∵函数在区间(-∞,1]上有意义,

∴(-∞,1]⊆(-∞,-1a],

∴-1a≥1,而a<0,∴-1≤a<0.

即a的取值范围是[-1,0).

高二语文期末试卷及答案

1:

cosA=1-2(sinA/2)^2;

sin(A/2)^2=(1-cosA/)2=(1-7/25/)2=9/25;

sin(A/2)=3/5;-3/5舍去;

∠B=∠A/2=arcsin(3/5);

sinA=根号下(1-cosA^2)=

2:

∠B=∠A/2

A的平分线AD

所以:

BD=AD=10;

∠ADB=180-∠A;

余弦定理:

AB^2=AD^2+BD^2-2ADBDcos∠ADB=100+100+2*100*7/25=256;

AB=16;

∠C=180-3B;

sinC=sin3B=3sinB-4sinB^3=3*3/5-4*(3/5)^3=9*13/125=117/125;

AC/sinB=AB/sinC;

AC=[16/(117/125)]*(3/5)=16*25/39=400/39

以上就是高中函数试题及答案的全部内容,解析:由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,对于本题而言,当-1≤a≤1时,直线x=a与函数的图象仅有一个交点,当a>1或a<-1时。

猜你喜欢