高中的数学工试,全国数学高中联赛一试难度

  • 高中数学
  • 2025-11-21

高中的数学工试?等差数列通项公式:$ a_n = a_1 + (n-1)d $,其中 $ a_1 $ 为首项,$ d $ 为公差。等比数列通项公式:$ a_n = a_1 cdot r^{n-1} $,其中 $ a_1 $ 为首项,$ r $ 为公比。那么,高中的数学工试?一起来了解一下吧。

数学高中试卷倒数第二道题

高中阶段的不等式公式:

一、两个数的不等式公式

1、若a-b>0,则a>b(作差)。

2、若a>b,则a±c>b±c。

3、若a+b>c,则a>b-c(移项)。

4、若a>b,则c>d(不等号同向相加成立,两个大的加起来,肯定比两个小的加起来大)。

5、若a>b>0,c>d>0则ac>bd(两个大正数相乘肯定比两个小正数的相乘大)。

6、若a>b>0,则an>bn(n∈N,n>1)。

二、基本不等式(也叫均值不等式)

思想:反应的是算术平均值(a+b)/2和几何平均值的大小关系,这里a,b都是非负数。

1、(a+b)/2≥ab(算术平均值不小于几何平均值)。

2、a2+b2≥2ab(由1两边平方变化而来)。

3、ab≤(a2+b2)/2≤(a+b)2 /2(由2扩展而来)。

三、绝对值不等式公式(a,b看成向量,“||”看成向量的模也适用)

思想:三角形两边之差小于第三边,两边之和大于第三边。

1、||a|-|b| |≤|a-b|≤|a|+|b|

2、||a|-|b| |≤|a+b|≤|a|+|b|

四、二次函数不等式

f(x)=ax2+bx +c(a≠0)

思想:函数图像是开口向上(a>0)或开口向下(a<0)的曲线,令函数值为0,解出f(x)的零点,符号看函数值处在纵坐标的正半轴还是负半轴。

高中数学竞赛二试内容

高中数学常用公式

三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b2-4ac)/2a,-b-√(b2-4ac)/2a

根与系数的关系X1+X2=-b/aX1*X2=c/a 注:韦达定理

判别式b2-4a=0 注:方程有相等的两实根

b2-4ac>0 注:方程有一个实根

b2-4ac

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n*2

2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径

余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

直棱柱侧面积S=c*h

斜棱柱侧面积S=c*h

正棱锥侧面积S=1/2c*h

正棱台侧面积S=1/2(c+c)h

圆台侧面积S=1/2(c+c)l=pi(R+r)l

球的表面积S=4pi*r2

圆柱侧面积S=c*h=2pi*h

圆锥侧面积S=1/2*c*l=pi*r*l

弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h

斜棱柱体积V=SL 注:其中S是直截面面积,L是侧棱长

柱体体积公式;V=s*h圆柱体V=pi*r2h

正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径

余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角

圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标

圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0

抛物线标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py

直棱柱侧面积S=c*h斜棱柱侧面积S=c*h

正棱锥侧面积S=1/2c*h正棱台侧面积S=1/2(c+c)h

圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi*r2

圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

锥体体积公式V=1/3*S*H

斜棱柱体积V=SL 注:其中,S是直截面面积,L是侧棱长

柱体体积公式V=s*h圆柱体V=pi*r2h

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B))

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

2+4+6+8+10+12+14+…+(2n)=n(n+1)5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

常用导数公式

1、y=c(c为常数)y=0

2、y=x^ny=nx^(n-1)

3、y=a^xy=a^xlna

4、y=e^xy=e^x

5、y=logaxy=logae/x

6、y=lnxy=1/x

7、y=sinxy=cosx

8、y=cosxy=-sinx

9、y=tanxy=1/cos^2x

10、y=cotxy=-1/sin^2x

11、y=arcsinxy=1/√1-x^2

12、y=arccosxy=-1/√1-x^2

13、y=arctanxy=1/1+x^2

14、y=arccotxy=-1/1+x^2

高中数学常用定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、角形两边的和大于第三边

16、角形两边的差小于第三边

17、三角形内角和定理三角形三个内角的和等于180°

18、直角三角形的两个锐角互余

19、三角形的一个外角等于和它不相邻的两个内角的和

20、三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

24、有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(SSS)有三边对应相等的两个三角形全等

26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

27、在角的平分线上的点到这个角的两边的距离相等

28、到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的集合

30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

31、等腰三角形顶角的平分线平分底边并且垂直于底边

32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33、等边三角形的各角都相等,并且每一个角都等于60°

34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35、三个角都相等的三角形是等边三角形

36、有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38、直角三角形斜边上的中线等于斜边上的一半

39、线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、关于某条直线对称的两个图形是全等形

43、如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

48、四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理n边形的内角的和等于(n-2)×180°

51、任意多边的外角和等于360°

52、平行四边形的对角相等

53、平行四边形的对边相等

54、夹在两条平行线间的平行线段相等

55、平行四边形的对角线互相平分

56、两组对角分别相等的四边形是平行四边形

57、两组对边分别相等的四边形是平行四边形

58、对角线互相平分的四边形是平行四边形

59、一组对边平行相等的四边形是平行四边形

60、矩形的四个角都是直角

61、矩形的对角线相等

62、有三个角是直角的四边形是矩形

63、对角线相等的平行四边形是矩形

64、菱形的四条边都相等

65、菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

67、四边都相等的四边形是菱形

68、对角线互相垂直的平行四边形是菱形

69、正方形的四个角都是直角,四条边都相等

70、正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、关于中心对称的两个图形是全等的

72、关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

高中数学竞赛一试

乘法与因式分解

a^2-b^2=(a+b)(a-b)

a^3+b^3=(a+b)(a^2-ab+b^2) 

a^3-b^3=(a-b(a^2+ab+b^2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b^2-4ac=0 注:方程有两个相等的实根

b^2-4ac>0 注:方程有两个不等的实根 

b^2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA 

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA) 

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 

和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B) )

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2 

2+4+6+8+10+12+14+…+(2n)=n(n+1) 5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 

圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0

抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

定理:

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

作者:尘世的Angel2008-11-22 22:48 回复此发言

--------------------------------------------------------------------------------

2 高中数学公式

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

作者:尘世的Angel2008-11-22 22:48 回复此发言

--------------------------------------------------------------------------------

3 高中数学公式

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d wc呁/S∕ ?

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

全国数学高中竞赛试题

高中数学公式涵盖多个领域,包括代数、几何、三角函数、数列、概率统计等。以下是一些常用的高中数学公式:

一、代数

因式分解公式

$a^2 - b^2 = (a + b)(a - b)$

$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

一元二次方程求根公式

$x = frac{-b pm sqrt{b^2 - 4ac}}{2a}$

韦达定理

若方程 $ax^2 + bx + c = 0$ 的两个根为 $x_1, x_2$,则:

$x_1 + x_2 = -frac{b}{a}$

$x_1 cdot x_2 = frac{c}{a}$

二、几何

直线方程

点斜式:$y - y_1 = m(x - x_1)$

两点式:$frac{y - y_1}{y_2 - y_1} = frac{x - x_1}{x_2 - x_1}$

一般式:$Ax + By + C = 0$

圆的方程

标准方程:$(x - a)^2 + (y - b)^2 = r^2$

一般方程:$x^2 + y^2 + Dx + Ey + F = 0$

点到直线的距离公式

$d = frac{|Ax_0 + By_0 + C|}{sqrt{A^2 + B^2}}$

直线与圆的位置关系

相离:$d > r$

相切:$d = r$

相交:$d < r$

三、三角函数

诱导公式

$sin(pi/2 - alpha) = cosalpha$

$cos(pi/2 - alpha) = sinalpha$

$tan(pi/2 - alpha) = frac{1}{tanalpha}$

两角和与差公式

$sin(alpha pm beta) = sinalphacosbeta pm cosalphasinbeta$

$cos(alpha pm beta) = cosalphacosbeta mp sinalphasinbeta$

$tan(alpha pm beta) = frac{tanalpha pm tanbeta}{1 mp tanalphatanbeta}$

二倍角公式

$sin 2alpha = 2sinalphacosalpha$

$cos 2alpha = cos^2alpha - sin^2alpha = 2cos^2alpha - 1 = 1 - 2sin^2alpha$

$tan 2alpha = frac{2tanalpha}{1 - tan^2alpha}$

正弦定理

$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C} = 2R$($R$ 为外接圆半径)

余弦定理

$a^2 = b^2 + c^2 - 2bccos A$

$b^2 = a^2 + c^2 - 2accos B$

$c^2 = a^2 + b^2 - 2abcos C$

四、数列

等差数列

通项公式:$a_n = a_1 + (n - 1)d$

求和公式:$S_n = frac{n}{2}(a_1 + a_n) = frac{n}{2}[2a_1 + (n - 1)d]$

等比数列

通项公式:$a_n = a_1q^{n - 1}$

求和公式:$S_n = frac{a_1(1 - q^n)}{1 - q}$($q neq 1$)

五、概率统计

概率公式

$P(A) = frac{m}{n}$($m$ 为事件 $A$ 包含的基本事件数,$n$ 为样本空间的基本事件总数)

排列组合公式

排列数:$A_n^m = n(n - 1)(n - 2) cdots (n - m + 1)$

组合数:$C_n^m = frac{n!}{m!(n - m)!}$

均值与方差

均值:$bar{x} = frac{1}{n}sum_{i=1}^{n}x_i$

方差:$s^2 = frac{1}{n}sum_{i=1}^{n}(x_i - bar{x})^2$

六、其他常用公式

对数公式

$log_a{mn} = log_a{m} + log_a{n}$

$log_a{frac{m}{n}} = log_a{m} - log_a{n}$

$log_a{m^n} = nlog_a{m}$

复数公式

$i^2 = -1$

复数乘法:$(a + bi)(c + di) = ac - bd + (ad + bc)i$

以下是一些相关公式的图片展示:

这些公式是高中数学中的基础,掌握它们对于解决数学问题至关重要。

高中数学竞赛一试如何准备

十六个基本导数公式

(y:原函数;y':导函数):

1、y=c,y'=0(c为常数)

2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。

3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。

4、y=logax, y'=1/(xlna)(a>0且 a≠1);y=lnx,y'=1/x。

5、y=sinx,y'=cosx。

6、y=cosx,y'=-sinx。

7、y=tanx,y'=(secx)^2=1/(cosx)^2。

8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。

9、y=arcsinx,y'=1/√(1-x^2)。

10、y=arccosx,y'=-1/√(1-x^2)。

11、y=arctanx,y'=1/(1+x^2)。

12、y=arccotx,y'=-1/(1+x^2)。

13、y=shx,y'=ch x。

14、y=chx,y'=sh x。

15、y=thx,y'=1/(chx)^2。

16、y=arshx,y'=1/√(1+x^2)。

导数小知识:

1、导数的四则运算: (uv)'=uv'+u'v (u+v)'=u'+v' (u-v)'=u'-v' (u/v)'=(u'v-uv')/v^2 。

以上就是高中的数学工试的全部内容,1、y=c,y'=0(c为常数)2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。4、y=logax, y'=1/(xlna)(a>0且 a≠1);y=lnx,y'=1/x。5、y=sinx,y'=cosx。6、y=cosx,y'=-sinx。7、y=tanx,内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。

猜你喜欢