高中函数有什么性质,高中所有函数图像

  • 高中数学
  • 2025-12-19

高中函数有什么性质?高中对勾函数基本性质如下:1、函数图像位于坐标系的一、三象限。2、当固定y=ax+b/x(a>0,b>0)中a的值不变,|b|越大时,函数图像距离坐标系“原点”越远;|b|越小时,函数图像距离坐标系“原点”越近。即b越大,在第一象限的函数图像越高,在第三象限的函数图像越低;b越小,在第一象限的函数图像越低,那么,高中函数有什么性质?一起来了解一下吧。

函数性质

1.一次函数(包括正比例函数)

最简单最常见的函数,在平面直角坐标系上的图象为直线.

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R

值域:R

奇偶性:无

周期性:无

平面直角坐标系解析式(下简称解析式):

①ax+by+c=0[一般式]

②y=kx+b[斜截式]

(k为直线斜率,b为直线纵截距,正比例函数b=0)

③y-y1=k(x-x1)[点斜式]

(k为直线斜率,(x1,y1)为该直线所过的一个点)

④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]

((x1,y1)与(x2,y2)为直线上的两点)

⑤x/a-y/b=0[截距式]

(a、b分别为直线在x、y轴上的截距)

解析式表达局限性:

①所需条件较多(3个);

②、③不能表达没有斜率的直线(平行于x轴的直线);

④参数较多,计算过于烦琐;

⑤不能表达平行于坐标轴的直线和过圆点的直线.

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角.设一直线的倾斜角为a,则该直线的斜率k=tg(a).

2.二次函数:

题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线.

定义域:R

值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)

奇偶性:偶函数

周期性:无

解析式:

①y=ax^2+bx+c[一般式]

⑴a≠0

⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

⑶极值点:(-b/2a,(4ac-b^2)/4a);

⑷Δ=b^2-4ac,

Δ>0,图象与x轴交于两点:

([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);

Δ=0,图象与x轴交于一点:

(-b/2a,0);

Δ<0,图象与x轴无交点;

②y=a(x-h)^2+t[配方式]

此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);

3.反比例函数

在平面直角坐标系上的图象为双曲线.

定义域:(负无穷,0)∪(0,正无穷)

值域:(负无穷,0)∪(0,正无穷)

奇偶性:奇函数

周期性:无

解析式:y=1/x

4.幂函数

y=x^a

①y=x^3

定义域:R

值域:R

奇偶性:奇函数

周期性:无

图象类似于将一个过圆点的二次函数的第四区间部分关于x轴作轴对称

后得到的图象(类比,这个方法不能得到三次函数图象)

②y=x^(1/2)

定义域:[0,正无穷)

值域:[0,正无穷)

奇偶性:无(即非奇非偶)

周期性:无

图象类似于将一个过圆点的二次函数以原点为旋转中心,顺时针旋转

90°,再去掉y轴下方部分得到的图象(类比,这个方法不能得到三次

函数图象)

5.指数函数

在平面直角坐标系上的图象(太难描述了,说一下性质吧……)

恒过点(0,1).联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减.

定义域:R

值域:(0,正无穷)

奇偶性:无

周期性:无

解析式:y=a^x

a>0

性质:与对数函数y=log(a)x互为反函数.

*对数表达:log(a)x表示以a为底的x的对数.

6.对数函数

在定义域上的图象与对应的指数函数(该对数函数的反函数)的图象关于直线y=x轴对称.

恒过定点(1,0).联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减.

定义域:(0,正无穷)

值域:R

奇偶性:无

周期性:无

解析式:y=log(a)x

a>0

性质:与对数函数y=a^x互为反函数.

7.三角函数

⑴正弦函数:y=sinx

图象为正弦曲线(一种波浪线,是所有曲线的基础)

定义域:R

值域:[-1,1]

奇偶性:奇函数

周期性:最小正周期为2π

对称轴:直线x=kπ/2 (k∈Z)

中心对称点:与x轴的交点:(kπ,0)(k∈Z)

⑵余弦函数:y=cosx

图象为正弦曲线,由正弦函数的图象向左平移π/2个单位(最小平移量)所得.

定义域:R

值域:[-1,1]

奇偶性:偶函数

周期性:最小正周期为2π

对称轴:直线x=kπ (k∈Z)

中心对称点:与x轴的交点:(π/2+kπ,0)(k∈Z)

⑶正切函数:y=tg x

图象的每个周期单位很像是三次函数,很多个,均匀分布在x轴上.

定义域:{x│x≠π/2+kπ}

值域:R

奇偶性:奇函数

周期性:最小正周期为π

对称轴:无

中心对称点:与x轴的交点:(kπ,0)(k∈Z).

8.反三角函数:

y=arcsin(x),

定义域[-1,1] ,

值域[-π/2,π/2]

1)y=arccos(x),

定义域[-1,1] ,

值域[0,π],

2)y=arctan(x),

定义域(-∞,+∞),

值域(-π/2,π/2),

函数性质公式arcsin(-x)=-arcsinx

arccos(-x)=π-arccosx

arctan(-x)=-arctanx

arccot(-x)=π-arccotx

arcsinx+arccosx=π/2=arctanx+arccotx

sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

9.复合函数:

y=f(μ)=f[φ(x)],

其中x称为自变量,μ为中间变量,y为因变量

定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数

y=f[g(x)]的定义域是:复合函数的导数D={x|x∈A,且g(x)∈B}

周期性:设y=f(u),的最小正周期为T1,

μ=φ(x)的最小正周期为T2,

则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+)

增减性:依y=f(x),μ=φ(x)的增减性决定.

即“增增得增,减减得增,增减得减”,可以简化为“同增异减”

10)初等函数

初等函数是由幂函数(power function)、指数函数(exponential function)、对数函数(logarithmicfunction)、三角函数(trigonometric function)、反三角函数(inverse trigonometic function)与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数.

一般初等函数的导数还是初等函数,但初等函数的不定积分不一定是初等函数.另外初等函数的反函数不一定是初等函数.

函数基本性质

高中数学八大函数是:幂函数,指数函数,对数函数,反函数,一次函数,二次函数,反比例函数,对勾函数。

函数的性质:

折叠函数有界性:设函数f(x)的定义域为D,数集X包含于D。如果存在数K1,使得f(x)≤K1对任一x∈X都成立,则称函数f(x)在X上有上界,而K1称为函数f(x)在X上的一个上界。

如果存在数K2,使得f(x)≥K2对任一x∈X都成立,则称函数f(x)在X上有下界,而K2称为函数f(x)在X上的一个下界。如果存在正数M,使得|f(x)|≤M对任一x∈X都成立,则称函数f(x)在X上有界,如果这样的M不存在,就称函数f(x)在X上无界。

函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。

折叠函数的单调性:设函数f(x)的定义域为D,区间I包含于D。如果对于区间I上任意两点x1及x2,当x1

如果对于区间I上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调减少的。单调增加和单调减少的函数统称为单调函数。

高中常见函数图像

知识的确是天空中伟大的太阳,它那万道光芒投下了生命,投下了力量。下面我给大家分享一些高中数学函数知识点,希望能够帮助大家,欢迎阅读!

目录

一次函数定义与定义式

一次函数的性质

一次函数的图像及性质

高中数学函数的奇偶性

高中数学函数知识点

高中数学函数知识点大全

一次函数定义与定义式

自变量x和因变量y有如下关系:

y=kx+b

则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)

一次函数的性质

1.y的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k为任意不为零的实数b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

一次函数的图像及性质

1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。

初中函数的定义与性质

高中对勾函数基本性质如下:

1、函数图像位于坐标系的一、三象限。

2、当固定y=ax+b/x(a>0,b>0)中a的值不变,|b|越大时,函数图像距离坐标系“原点”越远;|b|越小时,函数图像距离坐标系“原点”越近。

即b越大,在第一象限的函数图像越高,在第三象限的函数图像越低;b越小,在第一象限的函数图像越低,在第三象限的函数图像越高。

3、对勾函数y=ax+b/x(a>0,b>0)中,|a|的值越大(即a越大时),双曲线的开口越小;|a|的值越小(即a越小时),双曲线的开口越大。

4、不管a、b怎么变化,y=ax+b/x(a>0,b>0)都以y轴和y=ax为其函数图像的两条渐近线。

5、对于对勾函数y=ax+b/x(a<0,b<0),其基本性质包括:函数图像位于坐标系的二、四象限。

对勾函数的应用:

1、经济领域:对勾函数可以用来表示经济现象中的阶段性变化,例如需求函数和生产函数。在计算机科学中,对勾函数常用于图像处理和计算机图形学中的分段插值。

2、数学领域:对勾函数具有有界性、递增性、连续性和可导性等性质,因此在数学领域中常被用于建模和求解问题。

高中函数

函数的图象是高考的必考点,对于研究函数的单调性、奇偶性以及最值(值域)、零点有举足轻重的作用,但是很多同学看到眼花缭乱的函数解析式,就已经晕头转向了,再去画图象,不是这里错,就是那里有问题,图象也画的乱七八糟,更甭提利用图象去解题了!

但掌握以下几步,画函数图象将轻而易举:

1、首先,观察是否是基本初等函数(也就是我们在课本中学过的那几类函数),如果是,那就可以直接画;

2、如果不是,继续第二步,看看是否是经过一系列函数变换的,比如:翻折变换,对称变换,伸缩变换,平移变换等,如果是,那就根据变换的规律画出图象;

3、如果还不是,那基本这个函数图象也不需要你独自画出来了,那种题目基本会考查选择题,能从4个选项中选择出来就可以了!(今天不研究那种函数图象)

下面,给大家整理一些常用函数的图象以及函数变换的规律,希望大家能学明白!

一、基本初等函数的图象

一次函数

性质:一次函数图象是直线,当k>0时,函数单调递增;当k<0时,函数单调递减。

二次函数

性质:二次函数图象是抛物线,a决定函数图象的开口方向,判别式b^2-4ac决定了函数图象与x轴的交点,对称轴两边函数的单调性不同。

反比例函数

性质:反比例函数图象是双曲线,当k>0时,图象经过一、三象限;当k<0时,图象经过二、四象限。

以上就是高中函数有什么性质的全部内容,函数的表示方法:掌握函数的三种表示方法,即解析法、列表法和图像法。函数的性质:单调性:理解函数在其定义域内的单调递增或单调递减性质,并能通过导数判断函数的单调性。内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。

猜你喜欢