高一数学期末考试试卷及答案?试题 一选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知是第二象限角,,则()A.B.C.D.2.集合,,那么,高一数学期末考试试卷及答案?一起来了解一下吧。
心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家带来一些关于高一数学下册期末试卷及答案,希望对大家有所帮助。
试题
一选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知是第二象限角,,则()
A.B.C.D.
2.集合,,则有()
A.B.C.D.
3.下列各组的两个向量共线的是()
A.B.
C.D.
4.已知向量a=(1,2),b=(x+1,-x),且a⊥b,则x=()
A.2B.23C.1D.0
5.在区间上随机取一个数,使的值介于到1之间的概率为
A.B.C.D.
6.为了得到函数的图象,只需把函数的图象
A.向左平移个单位B.向左平移个单位
C.向右平移个单位D.向右平移个单位
7.函数是()
A.最小正周期为的奇函数B.最小正周期为的偶函数
C.最小正周期为的奇函数D.最小正周期为的偶函数
8.设,,,则()
A.B.C.D.
9.若f(x)=sin(2x+φ)为偶函数,则φ值可能是()
A.π4B.π2C.π3D.π
10.已知函数的值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则下列各式中符合条件的解析式是
A.B.
C.D.
11.已知函数的定义域为,值域为,则的值不可能是()
A.B.C.D.
12.函数的图象与曲线的所有交点的横坐标之和等于
A.2B.3C.4D.6
第Ⅱ卷(非选择题,共60分)
二、填空题(每题5分,共20分)
13.已知向量设与的夹角为,则=.
14.已知的值为
15.已知,则的值
16.函数f(x)=sin(2x-π3)的图像为C,如下结论中正确的是________(写出所有正确结论的编号).
①图像C关于直线x=1112π对称;②图像C关于点(23π,0)对称;③函数f(x)在区间[-π12,512π]内是增函数;④将y=sin2x的图像向右平移π3个单位可得到图像C.、
三、解答题:(共6个题,满分70分,要求写出必要的推理、求解过程)
17.(本小题满分10分)已知.
(Ⅰ)求的值;
(Ⅱ)求的值.
18.(本小题满分12分)如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(35,45),记∠COA=α.
(Ⅰ)求1+sin2α1+cos2α的值;
(Ⅱ)求cos∠COB的值.
19.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),
(1)若a与b-2c垂直,求tan(α+β)的值;
(2)求|b+c|的值.
20.(本小题满分12分)函数f(x)=3sin2x+π6的部分图像如图1-4所示.
(1)写出f(x)的最小正周期及图中x0,y0的值;
(2)求f(x)在区间-π2,-π12上的值和最小值.
21.(本小题满分12分)已知向量的夹角为.
(1)求;(2)若,求的值.
22.(本小题满分12分)已知向量).
函数
(1)求的对称轴。
高一期末考试数学试题
一、选择题:(每小题5分,共60分)
1、过点(-1,3)且垂直于直线x-2y+3=0的直线方程是( )
A、x-2y+7=0 B、2x+y-1=0
C、x-2y-5=0 D、2x+y-5=0
2、如图,一个空间几何体的主视图和左视图都是边长相等的正方形,
俯视图是一个圆,那么这个几何体是( )、
A、棱柱 B、圆柱 C、圆台 D、圆锥
3、 直线 :ax+3y+1=0, :2x+(a+1)y+1=0, 若 ∥ ,则a=( )
A、-3 B、2 C、-3或2 D、3或-2
4、已知圆C1:(x-3)2+y2=1,圆C2:x2+(y+4)2=16,则圆C1,C2的位置关系为( )
A、相交 B、相离 C、内切 D、外切
5、等差数列{an}中, 公差 那么使前 项和 最大的 值为( )
A、5 B、6 C、 5 或6 D、 6或7
6、若 是等比数列, 前n项和 ,则 ( )
A、 B、
7、若变量x,y满足约束条件y1,x+y0,x-y-20,则z=x-2y的最大值为( )
A、4 B、3
C、2 D、1
本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3
8、当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,半径为5的圆的方程为( )
A、x2+y2-2x+4y=0 B、x2+y2+2x+4y=0
C、x2+y2+2x-4y=0 D、x2+y2-2x-4y=0
9、方程 表示的曲线是( )
A、一个圆 B、两个半圆 C、两个圆 D、半圆
10、在△ABC中,A为锐角,lgb+lg( )=lgsinA=-lg , 则△ABC为( )
A、 等腰三角形 B、 等边三角形 C、 直角三角形 D、 等腰直角三角形
11、设P为直线 上的动点,过点P作圆C 的两条切线,切点分别为A,B,则四边形PACB的面积的最小值为( )
A、1 B、 C、 D、
12、设两条直线的方程分别 为x+y+a=0,x+y+b=0,已知a,b是方程x2+x+c=0的两个实根,
且018,则这两条直线之间的距离的最大值和最小值分别是( )、
A、 B、 C、 D、
第II卷(非选择题共90分)
二、填空题:(每小题5分,共20分)
13、空间直角 坐标系中点A和点B的坐标分别是(1,1,2)、(2,3,4),则 ______
14、 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _
15、 若实数 满足 的取值范围为
16、锐角三角形 中,若 ,则下列叙述正确的是
① ② ③ ④
本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3
三、解答题:(其中17小题10分,其它每小题12分,共70分)
17、直线l经过点P(2,-5),且与点A(3,-2)和B(-1,6)的距离之比为1:2,求直线l的方程、
18、在△ABC中,a,b,c分别是A,B,C的'对边,且2sin A=3cos A、
(1)若a2-c2=b2-mbc,求实数m的值;
(2)若a=3,求△ABC面积的最大值、
19、投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜 销售收入50万元、 设 表示前n年的纯利润总和(f(n)=前n年的总收入一前n年的总支出一投资额)、
(1)该厂从第几年开始盈利?
(2)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时, 以48万元出售该厂;②纯利润总和达到最大时,以10万元出售该厂,问哪种方案更合算?
20、 设有半径为3 的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇、设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?
21、设数列 的前n项和为 ,若对于任意的正整数n都有 、
(1)设 ,求证:数列 是等比数列,并求出 的通项公式。
心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家分享一些关于高一数学下册期末试卷及答案,希望对大家有所帮助。
一.选择题
1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为()
A.-1 B.0
C.3 D.不确定
[答案]B
[解析]因为f(x)是奇函数,其图象关于原点对称,它有三个零点,即f(x)的图象与x轴有三个交点,故必有一个为原点另两个横坐标互为相反数.
∴x1+x2+x3=0.
2.已知f(x)=-x-x3,x∈[a,b],且f(a)?f(b)<0,则f(x)=0在[a,b]内()
A.至少有一实数根 B.至多有一实数根
C.没有实数根 D.有惟一实数根
[答案]D
[解析]∵f(x)为单调减函数,
x∈[a,b]且f(a)?f(b)<0,
∴f(x)在[a,b]内有惟一实根x=0.
3.(09?天津理)设函数f(x)=13x-lnx(x>0)则y=f(x)()
A.在区间1e,1,(1,e)内均有零点
B.在区间1e,1,(1,e)内均无零点
C.在区间1e,1内有零点;在区间(1,e)内无零点
D.在区间1e,1内无零点,在区间(1,e)内有零点
[答案]D
[解析]∵f(x)=13x-lnx(x>0),
∴f(e)=13e-1<0,
f(1)=13>0,f(1e)=13e+1>0,
∴f(x)在(1,e)内有零点,在(1e,1)内无零点.故选D.
4.(2010?天津文,4)函数f(x)=ex+x-2的零点所在的一个区间是()
A.(-2,-1) B.(-1,0)
C.(0,1) D.(1,2)
[答案]C
[解析]∵f(0)=-1<0,f(1)=e-1>0,
即f(0)f(1)<0,
∴由零点定理知,该函数零点在区间(0,1)内.
5.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是()
A.m≤1 B.0C.m>1 D.0[答案]B
[解析]设方程x2+(m-3)x+m=0的两根为x1,x2,则有Δ=(m-3)2-4m≥0,且x1+x2=3-m>0,x1?x2=m>0,解得06.函数f(x)=(x-1)ln(x-2)x-3的零点有()
A.0个 B.1个
C.2个 D.3个
[答案]A
[解析]令f(x)=0得,(x-1)ln(x-2)x-3=0,
∴x-1=0或ln(x-2)=0,∴x=1或x=3,
∵x=1时,ln(x-2)无意义,
x=3时,分母为零,
∴1和3都不是f(x)的零点,∴f(x)无零点,故选A.
7.函数y=3x-1x2的一个零点是()
A.-1 B.1
C.(-1,0) D.(1,0)
[答案]B
[点评]要准确掌握概念,“零点”是一个数,不是一个点.
8.函数f(x)=ax2+bx+c,若f(1)>0,f(2)<0,则f(x)在(1,2)上零点的个数为()
A.至多有一个 B.有一个或两个
C.有且仅有一个 D.一个也没有
[答案]C
[解析]若a=0,则b≠0,此时f(x)=bx+c为单调函数,
∵f(1)>0,f(2)<0,∴f(x)在(1,2)上有且仅有一个零点;
若a≠0,则f(x)为开口向上或向下的抛物线,若在(1,2)上有两个零点或无零点,则必有f(1)?f(2)>0,
∵f(1)>0,f(2)<0,∴在(1,2)上有且仅有一个零点,故选C.
9.(哈师大附中2009~2010高一期末)函数f(x)=2x-log12x的零点所在的区间为()
A.0,14 B.14,12
C.12,1 D.(1,2)
[答案]B
[解析]∵f14=214-log1214=42-2<0,f12=2-1>0,f(x)在x>0时连续,∴选B.
10.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()
x -1 0 1 2 3
ex 0.37 1 2.72 7.39 20.09
A.(-1,0) B.(0,1)
C.(1,2) D.(2,3)
[答案]C
[解析]令f(x)=ex-x-2,则f(1)?f(2)=(e-3)(e2-4)<0,故选C.
二、填空题
11.方程2x=x3精确到0.1的一个近似解是________.
[答案]1.4
12.方程ex-x-2=0在实数范围内的解有________个.
[答案]2
三、解答题
13.借助计算器或计算机,用二分法求方程2x-x2=0在区间(-1,0)内的实数解(精确到0.01).
[解析]令f(x)=2x-x2,∵f(-1)=2-1-(-1)2=-12<0,f(0)=1>0,
说明方程f(x)=0在区间(-1,0)内有一个零点.
取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)≈0.46>0.因为f(-1)?f(-0.5)<0,所以x0∈(-1,-0.5).
再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈-0.03>0.因为f(-1)?f(-0.75)<0,所以x0∈(-1,-0.75).
同理,可得x0∈(-0.875,-0.75),x0∈(-0.8125,-0.75),x0∈(-0.78125,-0.75),x0∈(-0.78125,-0.765625),x0∈(-0.7734375,-0.765625).
由于|(-0.765625)-(0.7734375)|<0.01,此时区间(-0.7734375,-0.765625)的两个端点精确到0.01的近似值都是-0.77,所以方程2x-x2=0精确到0.01的近似解约为-0.77.
14.证明方程(x-2)(x-5)=1有两个相异实根,且一个大于5,一个小于2.
[解析]令f(x)=(x-2)(x-5)-1
∵f(2)=f(5)=-1<0,且f(0)=9>0.
f(6)=3>0.
∴f(x)在(0,2)和(5,6)内都有零点,又f(x)为二次函数,故f(x)有两个相异实根,且一个大于5、一个小于2.
15.求函数y=x3-2x2-x+2的零点,并画出它的简图.
[解析]因为x3-2x2-x+2=x2(x-2)-(x-2)
=(x-2)(x2-1)=(x-2)(x-1)(x+1),
所以函数的零点为-1,1,2.
3个零点把x轴分成4个区间:
(-∞,-1],[-1,1],[1,2],[2,+∞].
在这4个区间内,取x的一些值(包括零点),列出这个函数的对应值(取精确到0.01的近似值)表:
x … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 …
y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 …
在直角坐标系内描点连线,这个函数的图象如图所示.
16.借助计算器或计算机用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.(精确到0.1)
[解析]原方程为x3-4x2+x+5=0,令f(x)=x3-4x2+x+5.∵f(-1)=-1,f(0)=5,f(-1)?f(0)<0,∴函数f(x)在(-1,0)内有零点x0.
取(-1,0)作为计算的初始区间用二分法逐步计算,列表如下
端点或中点横坐标 端点或中点的函数值 定区间
a0=-1,b0=0 f(-1)=-1,f(0)=5 [-1,0]
x0=-1+02=-0.5
f(x0)=3.375>0 [-1,-0.5]
x1=-1+(-0.5)2=-0.75 f(x1)≈1.578>0 [-1,-0.75]
x2=-1+(-0.75)2=-0.875 f(x2)≈0.393>0 [-1,-0.875]
x3=-1-0.8752=-0.9375 f(x3)≈-0.277<0 [-0.9375,-0.875]
∵|-0.875-(-0.9375)|=0.0625<0.1,
∴原方程在(-1,0)内精确到0.1的近似解为-0.9.
17.若函数f(x)=log3(ax2-x+a)有零点,求a的取值范围.
[解析]∵f(x)=log3(ax2-x+a)有零点,
∴log3(ax2-x+a)=0有解.∴ax2-x+a=1有解.
当a=0时,x=-1.
当a≠0时,若ax2-x+a-1=0有解,
则Δ=1-4a(a-1)≥0,即4a2-4a-1≤0,
解得1-22≤a≤1+22且a≠0.
综上所述,1-22≤a≤1+22.
18.判断方程x3-x-1=0在区间[1,1.5]内有无实数解;如果有,求出一个近似解(精确到0.1).
[解析]设函数f(x)=x3-x-1,因为f(1)=-1<0,f(1.5)=0.875>0,且函数f(x)=x3-x-1的图象是连续的曲线,所以方程x3-x-1=0在区间[1,1.5]内有实数解.
取区间(1,1.5)的中点x1=1.25,用计算器可算得f(1.25)=-0.30<0.因为f(1.25)?f(1.5)<0,所以x0∈(1.25,1.5).
再取(1.25,1.5)的中点x2=1.375,用计算器可算得f(1.375)≈0.22>0.因为f(1.25)?f(1.375)<0,所以x0∈(1.25,1.375).
同理,可得x0∈(1.3125,1.375),x0∈(1.3125,1.34375).
由于|1.34375-1.3125|<0.1,此时区间(1.3125,1.34375)的两个端点精确到0.1的近似值是1.3,所以方程x3-x-1=0在区间[1,1.5]精确到0.1的近似解约为1.3.
高一数学下册期末试卷及答案相关文章:
★高一数学下册期末试卷及答案
★高一数学下学期期末试卷及参考答案
★高一年级数学试卷下册期末
★高一数学期末考试知识点总结
★2020高一期末数学复习计划汇总精选
★高一数学考试反思5篇
★高一期末考试数学备考方法
★高一期末数学复习计划5篇
★2020初一暑假作业参考答案历史(人教版)
★高一数学学习方法和技巧大全
数学测验
一、选择题(本大题共12个小题,每小题5分,共50分,)
1.sin2的值()
A.小于0 B.大于0C.等于0 D.不存在
2.已知 是角 终边上一点,且 ,则 = ( )
A 、 —10B、 C、D、
3.已知集合 , ,则 ()
A、 B、C、D、
4. ( )
A.B.C. D.
5.为了得到函数y=cos2x+π3的图象,只需将函数y=sin2x的图象()
A.向左平移5π12个长度单位B.向右平移5π12个长度单位
C.向左平移5π6个长度单位D.向右平移5π6个长度单位
6.已知 ,则 的值为( )
A.6 B.7C.8 D.9
7.三个数 , , 的大小关系是()
A. B.
C. D.
8.如果U是全集,M,P,S是U的三个子集,则
阴影部分所表示的集合为( )
A、(M∩P)∩S; B、(M∩P)∪S;
C、(M∩P)∩(CUS)D、(M∩P)∪(CUS)
9.方程sinπx=14x的解的个数是()
A.5 B.6C.7 D.8
10.如图函数f(x)=Asinωx(A>0,ω>0)一个周期的图象 ,
则f(1)+f(2)+f(3)+f(4)+f(5)+f(6)的值等于()
A.2 B.22C.2+2D.22
二、填空题(本大题共4个小题,每小题5分,共25分,把正确答案填在题中横线上)
11.已知扇形的圆心角为72°,半径为20cm,则扇形的面积为________.
12.函数 的图象恒过定点 ,则 点坐标是 .
13.已知sinθ=1-a1+a,cosθ=3a-11+a,若θ为第二象限角,实数a的值为 ________.
14.若1+sin2θ=3sinθcosθ则tanθ=________.
15.定义在 上的函数 满足 且 时, ,则 _______________.
三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤)
16.(本题满分10分) 求函数y=16-x2+sinx的定义域
17.(本题满分10分) 已知
(1)化简(2)若 是第三象限角,且 求 的值.
18、(本题满分13分)设函数 ,且 , .
(1)求 的值;(2)当 时,求 的最大值.
19.(本题满分14分)某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用 表示床价,用 表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入)
(1)把 表示成 的函数,并求出其定义域;
(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?
20.(本题满分14分)右图是函数f(x)=sin(ωx+φ)在某个周期上的图像,其中,试依图推出:(1)f(x)的最小正周期;(2)f(x)的单调递增区间;
(3)使f(x)取最小值的x的取值集合.(4)求f(x)的解析式
21.(本题满分14分) 函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a)(a∈R).
(1)求g(a);(2)若g(a)=12,求a及此时f(x)的最大值.
可以留个其它联系方式,我直接传给你几份
石家庄市2010-2011学年度第一学期期末考试试题参考答案
高一数学(A卷)
一.选择题:(每小题5分,共50分)
答案DBDDDCBBDA
二.填空题:(每小题5分,共30分).
11.-2/1 12. (4,+无穷)13. 2
14.-π/6 15. 3/516.1
其他弄不上来
.
以上就是高一数学期末考试试卷及答案的全部内容,∵f(1)>0,f(2)<0,∴在(1,2)上有且仅有一个零点,故选C.9.(哈师大附中2009~2010高一期末)函数f(x)=2x-log12x的零点所在的区间为()A.0,14 B.14,12 C.12。