高中数学快速解题300例?实际生活中用数学的例子很多,例如: 1.自家计算每月电费、水费。 2.为室内装修户测量并计算铺地面用多少地板砖,粉刷四壁和屋顶要购买多少涂料,需多少材料费。 3.植树节活动中,根据种植面积和树苗棵数,计算行距、株距。 4.学校操场大约的面积,一件物体(一袋盐、几个苹果、那么,高中数学快速解题300例?一起来了解一下吧。
高等数学包括高等代数和数学分析(微积分)等,行列式和高等代数有关,在解高阶行列式时要用高等代数中的线代知识进行化简,否则计算会相当复杂。
罗比达法则使用范围很窄,只能用于求极限的一部分题目,普遍意义不大。
数学分析的用处在高中阶段很大,如用导数来确定函数的单调性,极大(小)值,函数图象的凹凸性等,用定积分可以求出一些曲边形的面积(这用初等代数求解时比较复杂的)。
其中函数图象的凹凸性不在高中研究之列。
1.导数
应用于函数增减性的判断
举例:函数y=x+1/x,求导可得y'=1-1/x^2,然后判断y'与0的大小关系
就可以得到函数递增区间(-&,-1],[1,+&),递减区间(-1,0),(0,1);
2.积分
应用于函数图形面积的计算
举例:求解函数y=sinx在区间(0,pi)内与x轴围成区域的面积
求解步骤在最下面的那个图
3.马尔可夫过程
应用于一些独立事件发生的概率计算
举例:求解一只蚂蚁在正八面体(6个顶点8个面)上随机的移动,蚂蚁从一顶点出发到相邻的4个顶点的概率相同=1/4求蚂蚁在n步后回到起始点的概率
首先,要理解蚂蚁爬行的这个过程满足“马尔可夫过程”
马尔可夫过程定义:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。
其次,将正八面体的6个顶点分为3类,即蚂蚁爬行的起始点、一步到达的点、一步不能到达的点,则可以得到这三类点之间的转移矩阵如下。
100010
p(0)=010,,p(1)=1/41/21/4。p(n)=(p(1))^n(p(n)代表n步转移矩阵)
001010
最后,n步后回到起始点的概率就是p(n)中的第一项。
轨迹方程就是与几何轨迹对应的代数描述。符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。下面是我为大家整理的关于高中数学求轨迹方法及例题,希望对您有所帮助。欢迎大家阅读参考学习!
1高中数学求轨迹方法及例题
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合。求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
2常用方法
在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
高中数学解题方法同学们有去总结过吗,没有的话,快来我这里瞧瞧。下面是由我为大家整理的“高中数学解题方法总结”,仅供参考,欢迎大家阅读。
高中数学解题方法总结
1、配方法
把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
高中数学合集
1znmI8mJTas01m1m03zCRfQ
1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
以上就是高中数学快速解题300例的全部内容,换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、。