高中不等式的公式?(2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)(3)a²+b²≥2ab。(当且仅当a=b时,等号成立)(4)ab≤(a+b)²/4。(当且仅当a=b时,等号成立)(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)四、那么,高中不等式的公式?一起来了解一下吧。
高中数学基本不等式是如下:
1、基本不等式:
√(ab)≤(a+b)/2,那么可以变为 a^2-2ab+b^2 ≥ 0,a^2+b^2 ≥ 2ab,ab≤a与b的平均数的平方。
2、绝对值不等式公式:
| |a|-|b| |≤|a-b|≤|a|+|b|。
| |a|-|b| |≤|a+b|≤|a|+|b|。
3、柯西不等式:
设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2) 当且仅当ai=λbi(λ为常数,i=1,2.3,…n)时取等号。
4、三角不等式
对于任意两个向量b其加强的不等式,这个不等式也可称为向量的三角不等式。
5、四边形不等式
如果对于任意的a1≤a2 基本性质 ①如果x>y,那么y ②如果x>y,y>z;那么x>z(传递性)。 均值不等式6个基本公式是、Hn≤Gn≤An≤Qn。 1、均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。 2、关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式。 3、均值基本公式:已知x,y∈R+,x+y=S,x·y=P,如果P是定值,那么当且仅当x=y时,S有最小值;如果S是定值,那么当且仅当x=y时,P有最大值。或当a、b∈R+,a+b=k(定值)时,a+b≥2√ab (定值)当且仅当a=b时取等号。 4、设X1,X2,X3,……,Xn为大于0的数,则X1+X2+X3+……+Xn≥n乘n次根号下X1乘X2乘X3乘……乘Xn。均值定理,又称基本不等式。主要内容为在正实数范围内,若干数的几何平均数不超过他们的算术平均数,且当这些数全部相等时,算术平均数与几何平均数相等。 5、均值定理是高中数学学习中的一个非常重要的知识点,在函数求最值问题中有十分频繁的应用。 常用不等式公式: ①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。 ②√(ab)≤(a+b)/2。 ③a²+b²≥2ab。 ④ab≤(a+b)²/4。 ⑤||a|-|b| |≤|a+b|≤|a|+|b|。 原理: ①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。 ②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x) ③如果不等式F(x) ④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。 高中阶段的不等式公式: 一、两个数的不等式公式 1、若a-b>0,则a>b(作差)。 2、若a>b,则a±c>b±c。 3、若a+b>c,则a>b-c(移项)。 4、若a>b,则c>d(不等号同向相加成立,两个大的加起来,肯定比两个小的加起来大)。 5、若a>b>0,c>d>0则ac>bd(两个大正数相乘肯定比两个小正数的相乘大)。 6、若a>b>0,则an>bn(n∈N,n>1)。 二、基本不等式(也叫均值不等式) 思想:反应的是算术平均值(a+b)/2和几何平均值的大小关系,这里a,b都是非负数。 1、(a+b)/2≥ab(算术平均值不小于几何平均值)。 2、a2+b2≥2ab(由1两边平方变化而来)。 3、ab≤(a2+b2)/2≤(a+b)2 /2(由2扩展而来)。 三、绝对值不等式公式(a,b看成向量,“||”看成向量的模也适用) 思想:三角形两边之差小于第三边,两边之和大于第三边。 1、||a|-|b| |≤|a-b|≤|a|+|b| 2、||a|-|b| |≤|a+b|≤|a|+|b| 四、二次函数不等式 f(x)=ax2+bx +c(a≠0) 思想:函数图像是开口向上(a>0)或开口向下(a<0)的曲线,令函数值为0,解出f(x)的零点,符号看函数值处在纵坐标的正半轴还是负半轴。 高中数学中有四个基本不等式,它们分别是: 两个正数的乘积不小于零的不等式: 若 a > 0,b > 0,则 ab ≥ 0。 平方不小于零的不等式: 对于任意实数 a,有 a^2 ≥ 0。 两个正数的和大于零的不等式: 若 a > 0,b > 0,则 a + b > 0。 两个实数的平方和大于等于零的不等式: 对于任意实数 a、b,有 a^2 + b^2 ≥ 0。 这些基本不等式在解决各种数学问题中经常被使用。 以上就是高中不等式的公式的全部内容,高中6个基本不等式的公式有a^2+b^2≧2ab、√ab≦(a+b)/2、b/a+a/b≧2、(a+b+c)/3≧³;√abc、a^3+b^3+c^3≧3abc、柯西不等式。1、基本不等式a^2+b^2≧2ab:针对任意的实数a,b都成立,当且仅当a=b时,等号成立。证明的过程:因为(a-b)^2≧0,内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。根式不等式公式大全

高中不等式证明常用公式

基本不等式公式高中数学
不等式的全部公式
