高中数学课题题目,适合高中数学研究的课题

  • 高中数学
  • 2024-05-10

高中数学课题题目?1. 银行理财新视角:利息调税的数学模型在经济学的数学版图中,银行存款的利息计算与税收政策的互动,提供了一个现实而富有挑战性的研究课题。通过深入理解利率调整对个人和宏观经济的影响,你能锻炼财务分析的技能。那么,高中数学课题题目?一起来了解一下吧。

高中数学小课题研究题目

我之前曾是数学课代表 ... 写过的并不难比如说斐波那契数列的研究

码字不容易 望采纳谢谢

斐波那契数列,

又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

定义

斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368

特别指出:第0项是0,第1项是第一个1。

这个数列从第二项开始,每一项都等于前两项之和。

斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci)

递推公式

斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:

显然这是一个线性递推数列。

高中数学专题报告题目

数学研究性学习课题

1、银行存款利息和利税的调查

2、气象学中的数学应用问题

3、如何开发解题智慧

4、多面体欧拉定理的发现

5、购房贷款决策问题

6、有关房子粉刷的预算

7、日常生活中的悖论问题

8、关于数学知识在物理上的应用探索

9、投资人寿保险和投资银行的分析比较

10、黄金数的广泛应用

11、编程中的优化算法问题

12、余弦定理在日常生活中的应用

13、证券投资中的数学

14、环境规划与数学

15、如何计算一份试卷的难度与区分度

16、数学的发展历史

17、以“养老金”问题谈起

18、中国体育彩票中的数学问题

19、“开放型题”及其思维对策

20、解答应用题的思维方法

21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类

22、高中数学的学习活动——解题后的反思——开发解题智慧

23、中国电脑福利彩票中的数学问题

24、各镇中学生生活情况

25、城镇/农村饮食构成及优化设计

26、如何安置军事侦察卫星

27、给人与人的关系(友情)评分

28、丈量成功大厦

29、寻找人的情绪变化规律

30、如何存款最合算

31、哪家超市最便宜

32、数学中的黄金分割

33、通讯网络收费调查统计

34、数学中的最优化问题

35、水库的来水量如何计算

36、计算器对运算能力影响

37、数学灵感的培养

38、如何提高数学课堂效率

39、二次函数图象特点应用

40、统计月降水量

41、如何合理抽税

42、市区车辆构成

43、出租车车费的合理定价

44、衣服的价格、质地、品牌,左右消费者观念多少?

45、购房贷款决策问题

研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪)

《 立几部分 》

问题1

平几中证点共线、线共点往往较难,通常出现在竞赛中。

适合高中生的数学研究性课题

仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹沃土之间找到你真正的位置。无需自卑,不要自负,坚持自信。接下来是我为大家整理的2020高中数学教学教案,希望大家喜欢!

2020高中数学教学教案一

《平面向量》

各位评委,老师们:大家好!

很高兴参加这次说课活动.这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导.希望各位评委和老师们对我的说课内容提出宝贵意见.

我说课的内容是<平面向量>的教学,所用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本-必修)<数学>第一册下,教学内容为第96页至98页第五章第一节.本校是浙江省一级重点中学,学生基础相对较好.我在进行教学设计时,也充分考虑到了这一点.

下面我从教材分析,教学目标的确定,教学 方法 的选择和教学过程的设计四个方面来汇报我对这节课的教学设想.

一教材分析

(1)地位和作用

向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系.向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.

平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习.为学习向量的知识体系奠定了知识和方法基础.

(2)教学结构的调整

课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别.然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念.为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程.在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成.

(3)重点,难点,关键

由于本节课是本章内容的第一节课,是学生学习本章的基础.为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向.所以向量,相等向量的概念,向量的几何表示是这节课的重点.本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点.而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解.

二教学目标的确定

根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:

(1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量.会根据图形判定向量是否平行,共线,相等.

(2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

高中数学课题研究的最佳题目

数学研究性学习课题

1、银行存款利息和利税的调查

2、气象学中的数学应用问题

3、如何开发解题智慧

4、多面体欧拉定理的发现

5、购房贷款决策问题

6、有关房子粉刷的预算

7、日常生活中的悖论问题

8、关于数学知识在物理上的应用探索

9、投资人寿保险和投资银行的分析比较

10、黄金数的广泛应用

11、编程中的优化算法问题

12、余弦定理在日常生活中的应用

13、证券投资中的数学

14、环境规划与数学

15、如何计算一份试卷的难度与区分度

问题1平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。

问题2用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。

问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。

问题4异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。

关于数学的标题新颖

它的图像在现实中也有很大应用,比如拱桥啊,还有物理中的平抛运动。以下是资料。

进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射?:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为f(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知f(x)= 2x2+x+2,求f(x+1)这里不能把f(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设f(x+1)=x2-4x+1,求f(x)这个问题理解为,已知对应法则f下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。

以上就是高中数学课题题目的全部内容,数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、。

猜你喜欢