基本不等式公式高中,基本不等式关系是

  • 高中数学
  • 2025-04-16

基本不等式公式高中?高中4个基本不等式链:√[(a²+b²)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。基本不等式 基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。不等式定理口诀 解不等式的途径,利用函数的性质。那么,基本不等式公式高中?一起来了解一下吧。

不等式万能公式

高中4个基本不等式链:√[(a²+b²)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。

基本不等式

基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。

不等式定理口诀

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图、建模、构造法。

赫尔德不等式

基本不等式

Hn<=Gn<=An<=Qn

调和平均数<=几何平均数<=算术平均数<=几何平均数

要善于构造

比如说:求y=x^5+x^-2+3/x的最小值 x>0

解:利用几何平均数<=算术平均数

得y=x^5+x^-2+1/x+1/x+1/x

>=5*5次根号下(x^5*x^-2*1/x*1/x*1/x)

=5

所以最小值是5

注意应用的时候要有条件

1正2定3相等

高次基本不等式公式

如下图:

基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。

在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。“一正”就是指两个式子都为正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指当且仅当两个式子相等时,才能取等号。

高中基本不等式串

高中数学中常见的四个基本不等式分别是:

1. 两个正数的平均数大于等于它们的几何平均数:对于任意正数a和b,有(a+b)/2 ≥ √(ab)。

2. 两个正数的平方和大于等于它们的两倍乘积:对于任意正数a和b,有a^2 + b^2 ≥ 2ab。

3. 两个正数的立方和大于等于它们的三倍乘积:对于任意正数a和b,有a^3 + b^3 ≥ 3ab(a+b)。

4. 两个正数的n次幂和大于等于它们的n倍乘积:对于任意正数a和b,以及任意正整数n,有a^n + b^n ≥ nab^(n-1)。

这些不等式在解决各种数学问题、证明和优化中都有广泛应用。

四个基本不等式公式

三元不等式的基本公式介绍如下:

三元基本不等式公式证明:如果a,b,c∈R,那么a3+b3+c3≥3abc,当且仅当a=b=c时,等号成立;如果a,b,c∈R+,那么(a+b+c)/3≥3√(abc),当且仅当a=b=c时,等号成立。

一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(,≥,≤,≠)连接的式子叫做不等式。

常用定理

①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)

③如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。

以上就是基本不等式公式高中的全部内容,(2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)(3)a²+b²≥2ab。(当且仅当a=b时,等号成立)(4)ab≤(a+b)²/4。(当且仅当a=b时,等号成立)(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)四、内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。

猜你喜欢