高中三角函数化简题目?tan2α=2tanα/(1-tan²α)根据三角函数的乘积公式:cos(x)cos(y) = 1/2[cos(x-y) + cos(x+y)] 和 sin(x)sin(y) = 1/2[cos(x-y) - cos(x+y)],我们可以利用这两个公式来化简题目中的式子。那么,高中三角函数化简题目?一起来了解一下吧。
你好256314789同学!
【sin2a=2sinacosa,sina=cos(π/2-a)】
sin10sin50sin70
=cos80cos40cos20{等式乘以8sin20又乘以1/8sin20.所以等式不变}
=(1/8)(1/sin20) (2cos80(2cos40(2cos20sin20))){组合成第一个公式的形式}
=(1/8)(sin160/sin20) {【sina=sin(π-a)】}
=1/8
希望能够帮到你,祝你学习进步!!

(sinπ/11)(cosπ/11)(cos2π/11)(cos3π/11)(cos4π/11)(cos5π/11)/(sinπ/11)
=(sin2π/11)cos2π/11)(cos3π/11)(cos4π/11)(cos5π/11)/[2(sinπ/11)]
=(sin4π/11)(cos3π/11)(cos4π/11)(cos5π/11)/[4(sinπ/11)]
=sin8π/11)(cos3π/11)(cos5π/11)/[8(sinπ/11)]
=(sin3π/11)(cos3π/11)(cos5π/11)/[8(sinπ/11)]
=(sin6π/11)(cos5π/11)/[16(sinπ/11)]
=(sin5π/11)(cos5π/11)/[16(sinπ/11)]
=(sin10π/11)/[32(sinπ/11)]
=1/32
=2cos10sin10°sin50°sin70°/2cos10=sin20sin50cos20/2cos10=sin40sin50/4cos10=sin80/8cos10=1/8
化简:-sin140°/cos140°.
解:-sin140°/cos140°=-tan140°.
=-tan(180°-40°).
=-(-tan40°).
∴原式=tan40°.
先通分,(cos10度 —根号3乘sin10度)/sin10cos10
合一变形,倍角公式2(0.5cos10—0.5根号3sin10)/0.5sin20
2(sin30cos10—cos30sin10)/0.5sin20
用和差公式 2sin20/0.5sin20=4
(/为除号)
以上就是高中三角函数化简题目的全部内容,答案:函数$f(x)$的最小值为6。解析:首先,我们将给定的函数$f(x)$进行拆分和化简:f(x)=sqrt{15-12cos x }+sqrt{4-2sqrt3sin x}+sqrt{7-4sqrt{3}sin x}+sqrt{10-4sqrt{3}sin x-6cos x} 经过计算,内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。